Объяснение:
Все грани прямоугольного параллелепипеда - прямоугольники.
ΔА₁АС: ∠A₁AC = 90°
sinβ = AA₁ / A₁C, ⇒ AA₁ = A₁C · sinβ,
AA₁ = a · sinβ
cosβ = AC / A₁C, ⇒ AC = A₁C · cosβ,
AC = a · cosβ.
Точка пересечения диагоналей прямоугольника является центром описанной окружности. Тогда для окружности, описанной около прямоугольника ABCD ∠АОВ - центральный, а ∠ACB - вписанный, опирающийся на ту же дугу, значит
∠АCB = 1/2 ∠AOB = α/2.
ΔABC: ∠ABC = 90°
sin∠ACB = AB / AC, ⇒ AB = AC · sin∠ACB,
AB = a · cosβ · sin(α/2),
cos∠ACB = BC / AC, ⇒ BC = AC · cos∠ACB,
BC = a · cosβ · cos(α/2).
Sбок = Pосн · AA₁
Sбок = (AB + BC) · 2 · AA₁
Sбок = (a · cosβ · sin(α/2) + a · cosβ · cos(α/2)) · 2 · a · sinβ =
= a · cosβ(sin(α/2) + cos(α/2)) · 2 · a · sinβ =
= 2a²sinβ·cosβ(sin(α/2) + cos(α/2)) =
= a²sin2β (sin(α/2) + cos(α/2))
1)
Могут только пересекаться, но не касаться. Расстояние между центрами это не что иное как R+r+n где R - первый радиус, r - второй радиус, а n - расстояние между окружностями, если они не пересекаются. Но так как сумма радиусов больше 60, то они пересекаются.
2)Расстояние будет сумма радиусов. 30+40=70 см, а если круг в круге тогда 40-30=10 см
3)
Вот тут точно не знаю. Если бы было сказано, что хорда равна радиусу, тога пусть АБ хорда, тогда треугольник АОБ равносторонний. Т.к. касательная это перпендикуляр в точке Б, а углы в треугольнике равны по 60, тогда один из углов 30 градусов. Т.к. получается равнобедренный треугольник, тогда угол при вершине полученного треугольника будет равен 180 - 2*30=120 градусов.
ответ: 120 и 30 градусов