слова "середина другого-" смущают. Пусть вторая плоскость содержит середины боковых сторон (а первая - основания, целиком). Тогда третья вершина треугольника будет принадлежать третьей плоскости, отстоящей от второй на то же расстояние, что и первая, но - с другой стороны. Всегда можно провести секущую плоскость, чтобы треугольник лежал в ней. Легко показать и равенство расстояний, поскольку плоскость бета всегда проходит через среднюю линюю.
Дальше надо сформулировать утверждение о единственности плоскости, это утверждение очевидно, но требует точности. Скажем, если в 3 случаях у нас вершины попали в эту плоскость, то и все туда попадут, и никуда больше.
Это можно и так сформулировать - если взять 2 плоскости, и соединить 2 ЛЮБЫЕ точки, то плоскость, параллельная этим и равноотстоящая от них, разделит этот отрезок пополам.
Вообще все эти "авторские" задачи преследуют методические цели - надо, чтобы ученик владел простейшими понятиями. Скажем, если есть 2 плоскости, проходящие через три точки, то они совпадают... и так далее, неприятность тут в том, что надо именно владеть понятиями, как разговорным языком.
Диагональ, диагональ основания и боковое ребро составляют прямоугольный треугольник с углами 90, 60, 30. Против угла в 30 градусов лежит диагональ основания, равная a*sqrt(2). Тогда диагональ параллелепипеда в 2 раза больше, и равна a*2sqrt(2), по теореме Пифагора находим боковое ребро, оно равно a*sqrt(6). Объем равен произведению площади основания на боковое ребро, то есть a^3*sqrt(6).