М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
dzyadukh1
dzyadukh1
17.11.2021 07:58 •  Геометрия

Втреугольнике abc известно, что de — средняя линия. площадь треугольника cde равна 12. найдите площадь треугольника abc.

👇
Ответ:
bozenka20042004
bozenka20042004
17.11.2021

Средняя линия параллельна третьей стороне треугольника и равна ее половине:

DE║AB, DE = 1/2 AB.

∠CDE = ∠CAB как накрест лежащие углы при пересечении параллельных прямых DE и АВ секущей АС,

угол при вершине С общий для треугольников АВС и  DEC, значит эти треугольники подобны по двум углам.

k = DE/AB = 1/2

Отношение площадей подобных треугольников равно квадрату коэффициента подобия:

Sdec : Sacb = k² = 1 : 4

Sabc = 4Sdec = 4 · 12 = 48

4,8(64 оценок)
Открыть все ответы
Ответ:

abcd - трапеция; ad - нижнее основание; bc - верхнее основание; o - точка пересечения диагоналей. ef проходит через точку o и параллельно основаниям. mn проходит через точку o и перпендикулярно основаниям - высота трапеции. e∈ab; f∈cd; m∈bc; n∈ad

тр-к boc подобен тр-ку aod. отношение площадей подобных треугольников равно квадрату отношения соответственных линейных размеров, т.е. сторон и высот. значит, ad: bc=3^: 1; mo: on=1: 3; mo: mn=1: 4;

пусть bc=x⇒ad=3x; mo=y; ⇒on=3y; mn=4y

площадь трапеции abcd равна: s=1/2(ad+bc)*mo=1/2(x+3x)*4y=8xy

выразим через s площади befc   и aefd.

площадь aefd равна сумме площадей aofd   и aeo.

рассмотрим тр-ки acd и ocf. они подобны. их высоты относятся как 4: 1, а площади как 16: 1. площадь acd равна 1/2*3x*4y=6xy. площадь ocf равна 1/16*6xy=3/8*xy. площадь aofd   равна разности площадей acd и ocf:

6xy-3/8*xy=45/8*xy

рассмотрим тр-ки abc и aeo. они подобны. их высоты относятся как 4: 3, а площади как 16: 9. площадь abc равна 1/2*x*4y=2xy. площадь aeo равна 9/16*2xy=9/8*xy. площадь aefd   равна: 45/8*xy+9/8*xy=54/8*xy=27/4*xy

площадь befc равна разности площадей abcd и   aefd:

8xy-27/4*xy=5/4*xy

s(befc): s(aefd)=5/4*xy: 27/4*xy=5: 27

4,5(34 оценок)
Ответ:
wtfareudoing
wtfareudoing
17.11.2021

abcd - трапеция; ad - нижнее основание; bc - верхнее основание; o - точка пересечения диагоналей. ef проходит через точку o и параллельно основаниям. mn проходит через точку o и перпендикулярно основаниям - высота трапеции. e∈ab; f∈cd; m∈bc; n∈ad

тр-к boc подобен тр-ку aod. отношение площадей подобных треугольников равно квадрату отношения соответственных линейных размеров, т.е. сторон и высот. значит, ad: bc=3^: 1; mo: on=1: 3; mo: mn=1: 4;

пусть bc=x⇒ad=3x; mo=y; ⇒on=3y; mn=4y

площадь трапеции abcd равна: s=1/2(ad+bc)*mo=1/2(x+3x)*4y=8xy

выразим через s площади befc   и aefd.

площадь aefd равна сумме площадей aofd   и aeo.

рассмотрим тр-ки acd и ocf. они подобны. их высоты относятся как 4: 1, а площади как 16: 1. площадь acd равна 1/2*3x*4y=6xy. площадь ocf равна 1/16*6xy=3/8*xy. площадь aofd   равна разности площадей acd и ocf:

6xy-3/8*xy=45/8*xy

рассмотрим тр-ки abc и aeo. они подобны. их высоты относятся как 4: 3, а площади как 16: 9. площадь abc равна 1/2*x*4y=2xy. площадь aeo равна 9/16*2xy=9/8*xy. площадь aefd   равна: 45/8*xy+9/8*xy=54/8*xy=27/4*xy

площадь befc равна разности площадей abcd и   aefd:

8xy-27/4*xy=5/4*xy

s(befc): s(aefd)=5/4*xy: 27/4*xy=5: 27

4,4(40 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ