х - ширина площадки
(х + 10) - длина площадки , по условию задачи имеем : х *(х +10) = 9000
x^2 + 10x = 9000
x^2 + 10x - 9000 =0 . Найдем дискриминант квадратного уравнения - D
D = 10^2 - 4*1*(-9000) = 100 + 36000 = 36100 . Корень квадратный из дискриминанта равен 190 . Найдем корени квадратного уравнения : 1-ый = (- 10 + 190)/2*1 =180/2 = 90 ; 2-ой = (-10 - 190)/2*1 = -200/2 = - 100 . Второй корень не подходит так как х - это ширина площадки , а она не может быть меньше 0 . Значит ширина площадки равна 90 м. Отсюда длина площадки равна : х + 10 = 90 + 10 = 100 м
Объяснение:
в 9 вертикальные углы(О) равны, также равны углы К и Р и общая сторона MN, по 2 признаку р. треуг. одной стороне и двум прилежащим к ней углам.(KO,<K,<O и OP, <O, <P)
в 12 по 1 признаку р. треуг. 2 стороны MN и ME(общая) и углу между ними М, и также с другим треугольником.
в 13 вертикальные углы равны. по 1 признаку р. треугольников. две стороны и угол между ними. DO , AO, <O и OB, CO, <O
в 15 вертикальные углы равны <Р.
по первому признаку равенства треугольников угол е и угол р прилежащие углы к стране ЕР. а угол f и угол р прилежащие углы к стороне PF