Углы CDE = ADE, так как DE - биссектриса угла ADC. Углы CDE = AED, как внутренние накрест лежащие при AB||DC и секущей DE. Тогда углы ADE = AED. Следовательно, треугольник AED - равнобедренный и AE=AD=8. AB=AE+EB=8+9=17 P=2(AD+AB)=2(8+17)=50
Треугольник со сторонами 13,14 и 15 см вращается вокруг средней стороны.Найти поверхность тела. Тело вращения будет походить на детскую игрушку юла. Т.е. верхняя и нижняя части - два конуса с общим основанием АА₁ и радиусом, равным высоте АО данного треугольника, проведенным к средней по величине стороне, равной 14 см. Чтобы найти эту высоту, нужно найти по формуле Герона площадь треугольника. Вычисления приводить не буду - треугольник с такими сторонами встречается в задачах часто, его площадь легко запоминается и равна 84 см² S=a*h:2, где а - сторона, h- высота к ней. 2S=a*h h=2S:а h=168:14=12 см - это радиус окружности - общего основания конусов. Рассмотрим рисунок. Площадь тела равна сумме площадей боковых поверхностей конуса АВА₁ и конуса АСА₁ S =πrl S₁=π*12*13 S₂=π*12*15 S общ=12π(13+15)=336 π при π=3,14 S=1055,04см² при π полном ( на калькуляторе) S=1055,575 см²
Сначала строишь отрезки a и b. Потом с циркуля и линейки строишь: 1) Отрезок, равный 2b. 2) Прямоугольный равнобедренный треугольник с катетами, равными а. 3) Отрезок 2a. 4) Прямоугольный треугольник с катетами, равными 2a и a√2 (отрезок a√2 - это гипотенуза равнобедренного прямоугольного треугольника с катетами, равными а). 5) Прямоугольный треугольник с катетами, равными 2b и a√6 (отрезок a√6 - гипотенуза второго прямоугольного треугольника). 6) Гипотенуза третьего прямоугольного треугольника равна длине заданного отрезка x. Всё построение строится на теореме Пифагора.
Углы CDE = AED, как внутренние накрест лежащие при AB||DC и секущей DE.
Тогда углы ADE = AED. Следовательно, треугольник AED - равнобедренный и AE=AD=8.
AB=AE+EB=8+9=17
P=2(AD+AB)=2(8+17)=50