М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
aslan2002761
aslan2002761
03.02.2022 00:01 •  Геометрия

Вправильной четырехугольной пирамиде сторона основания равна 4 м, а высота 2 м. найти угол наклона боковой грани к плоскости основания, площадь полной поверхности пирамиды.

👇
Ответ:
a1b2c5612z
a1b2c5612z
03.02.2022
ABCD - квадрат, AB=BC=CD=AD=4.
MO= \frac{AB}{2} = \frac{4}{2} =2
SO=MO=2, значит ΔMOS - равнобедренный треугольник (углы при основаниях равны):
∠SMO = ∠MSO, также ∠MOS = 90°, тогда ∠SMO = \frac{180-90}{2} = 45° (Угол наклона боковой грани к плоскости основания).
S(п.пов) = S(бок.бов) + S(осн).
S(бок.бов) = \frac{1}{2} * P(осн.)*l.
l = MS = \sqrt{2^2 + 2^2} = 2\sqrt{2}
\frac{16*2\sqrt{2}}{2} = 16\sqrt{2}.
S(осн.) = 4 * 4 = 16.
S(п.пов) = 16 + 16\sqrt{2}. = 16(1+ \sqrt{2}) (Площадь полной поверхности пирамиды).
Вправильной четырехугольной пирамиде сторона основания равна 4 м, а высота 2 м. найти угол наклона б
4,8(83 оценок)
Открыть все ответы
Ответ:
GTmoonsoonall
GTmoonsoonall
03.02.2022

a) K, L, M ∈ α; α║(SBC)

KL║BS; KM║BC; ML║CS как линии пересечения двух параллельных плоскостей с одной общей.

SH⊥(ABC); AT⊥BC; H∈AT как центр правильного треугольника лежащий на медиане. AH:HT=2:1 по свойству пересечения медиан.

LU⊥KM ⇒ KU=UM ⇒ U∈AT ⇒ LU⊂(AST) ⇒ LU∩SH

Рассмотрим плоскость AST.

LU║ST как линии пересечения двух параллельных плоскостей с (AST).

AK:KB=AL:LS=5:1 по теореме о пропорциональных отрезках.

AU:UT=AL:LS по теореме о пропорциональных отрезках.

Как уже известно AH:HT=2:1. Пусть AU=5x; UT=x ⇒AT=6x ⇒ AH=4x; HT=2x ⇒ HU=2x-x=x.

ΔSHT~ΔRHU по 3 углам (1 общий остальные равны как соответственных угла при параллельных прямых).

Значит SH:RH=HT:HU=2:1. Пусть SH=2y; RH=y ⇒ SR=2y-y=y ⇒ SR=y=RH

То есть плоскость делит высоту пополам.

б) AT=AB*sin 60°=(15+3)*√3/2=9√3.

ΔAST~ΔALU по 3 углам (1 общий остальные равны как соответственных угла при параллельных прямых).

Значит AL:AS=LU:ST=6:5.

HT=1/3 *9√3=3√3 т.к. AH:HT=2:1

SH=13 ⇒ ST=√(169+27)=14 ⇒ LU=5/6 *14=35/3.

ΔAKM~ΔABC по 3 углам (1 общий остальные равны как соответственных угла при параллельных прямых).

Значит KM:BC=AK:AB=5:6 ⇒ KM=5/6 *18=15.

Как было указано в начале LU⊥KM ⇒ S=1/2* 15*35/3=175/2=87,5

ответ: 87,5.


На ребре ab правильной треугольной пирамиды sabc с основанием abc отмечена точка k, причём ak=15, bk
4,5(58 оценок)
Ответ:
WWW2014
WWW2014
03.02.2022

Определение: "Углом между плоскостью и не перпендикулярной ей прямой называется угол между этой прямой и ее проекцией на данную плоскость".

Опустим перпендикуляр С1Н на прямую СD1, лежащую в плоскости А1ВС (это плоскость А1ВСD1, так как секущая плоскость пересекает параллельные плоскости АА1В1В и DD1C1C по параллельным прямым А1В и D1C). Отрезок С1Н перпендикулярен любой прямой, проходящей через точку Н, лежащую в данной плоскости (свойство). Значит <C1HB=90° и искомый угол - это угол С1ВН - угол между наклонной ВС1 м ее проекцией ВН на плоскость А1ВС. В прямоугольном треугольнике С1ВН: синус угла С1ВН - это отношение противолежащего катета С1Н к гипотенузе ВС1.

По Пифагору D1C=√(D1C1²+CC1²) = √(36+64) = 10 ед (так как АВ=D1C1, a AA1=CC1, как боковые ребра параллелепипеда.

Точно так же ВС1=√(ВC²+CC1²) = √(225+64) = 17 ед.

Высота С1Н из прямого угла по ее свойству равна:

С1Н=(С1D1*CC1/D1C = 6*8/10 = 4,8 ед.

Тогда Sinα = C1H/BC1 = 4,8/17 ≈ 0,2823.

α = arcsin0,2823 ≈ 16,4°.


Впрямоугольном параллелепипеде abcda1b1c1d1 найдите угол между плоскостью a1bc и прямой bc1, если aa
4,6(64 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ