Трапеция равносторонней быть не может по определению))) от равнобедренной трапеции биссектриса отсекает равнобедренный же треугольник)) всегда при параллельных основаниях трапеции есть равные накрест лежащие углы... основания трапеции 5.5*2 = 11 и 12.5*2 = 25 равнобедренный треугольник будет со сторонами 25, 25 и диагональ... т.е. боковые стороны трапеции = 25 средняя линия =18 площадь трапеции = произведению средней линии на высоту)) осталось найти высоту... если провести две высоты, то получим прямоугольный треугольник с катетом (25-11)/2 = 7 и гипотенузой 25 (боковая сторона) h = √(25² - 7²) = √((25-7)(25+7)) = √(18*32) = 3*2*4 = 24 S = 18*24 = 432
Уравнение окружности в общем виде: ( х - а)^2 + (у - в)^2 = R^2, где (а,в) - координаты центра окружности, R - радиус. Если центр окружности лежит на биссектрисе, значит координаты равны у = х. Пусть у = х = t. Точка (1; 8) принадлежит окружности, значит: (1-t)^2 + (8-t)^2 = 5^2; 1 - 2t + t^2 + 64 - 16t + t^2 = 25; 2t^2 - 18t + 40 = 0; t^2 - 9t + 20 = 0; t = 4 или t = 5, уравнений, удовлетворяющих данному условию два: (х - 5)^2 + (y - 5)^2 = 5^2 или (х -4)^2 + (y - 4)^2 = 5^2
Радиус описанной окружности правильного многоугольникаПравильный многоугольник - это такой многоугольник, у которого равные стороны и углы. А угол между соседними вершинами правильного n-угольника равен:BOA = x = 360°/n, где BOA - треугольник, x - длина его основания, n - это число сторон правильного многоугольника.Построим треугольник BOA отдельно. О нём нам известно:он равнобедренный;бедра треугольника BOA - это так же радиусы описанной окружности правильного n-угольника;длина основания «x» треугольника BOA - это сторона исходного правильного многоугольника.угол между радиусами R, который мы прежде вычислили по формуле (**).В первую очередь необходимо опустить высоту на основание и рассмотреть прямоугольный треугольник, который у нас получился. С тригонометрических функций угла (в данном случае острого) получаем:sin(360°/2n) = x/2R, с чего получаем формулу собственно радиуса описанной окружности правильного n-угольника:R = x/(2sin(360°2n)), R - это радиус описанной окружности правильного n-угольника, x - сторона правильного многоугольника и n - это число сторон правильного многоугольника.
от равнобедренной трапеции биссектриса отсекает равнобедренный же треугольник))
всегда при параллельных основаниях трапеции есть равные накрест лежащие углы...
основания трапеции 5.5*2 = 11 и 12.5*2 = 25
равнобедренный треугольник будет со сторонами 25, 25 и диагональ...
т.е. боковые стороны трапеции = 25
средняя линия =18
площадь трапеции = произведению средней линии на высоту))
осталось найти высоту...
если провести две высоты, то получим прямоугольный треугольник с катетом (25-11)/2 = 7 и гипотенузой 25 (боковая сторона)
h = √(25² - 7²) = √((25-7)(25+7)) = √(18*32) = 3*2*4 = 24
S = 18*24 = 432