М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
mafa091
mafa091
16.11.2020 15:26 •  Геометрия

Периметр прямоугольника 16 см его ширина на 4 см меньше длины найти стороны прямоугольника

👇
Ответ:
алексей041
алексей041
16.11.2020
Вот полный ответ на задачу
Периметр прямоугольника 16 см его ширина на 4 см меньше длины найти стороны прямоугольника
4,8(5 оценок)
Ответ:
B - ШИРИНА
A - ДЛИНА
S=(A+B)*2
P=A+B
A=B+4                                                                                                               Решаем
2a-2b=16
2*(b+4)+2b=16=4*2=8
P=16-8=8
B=8:4=2 (ш)-ширина
A=4+2=6 (д)-длина
6,2
4,8(50 оценок)
Открыть все ответы
Ответ:
andkrutoi2018
andkrutoi2018
16.11.2020
Треугольники SCD и SAB - прямоугольные и центр описанной около них  окружности лежит в центре их общей гипотенузы SB.
Следовательно, центр шара , описанного вокруг пирамиды SABC лежит в этой  же точке и радиус его равен половине ребра SB. Ребро SB найдем по  Пифагору: SB=√(L²+b²).
Значит OA=OC=OB=OS=Rш=(1/2)√(L²+b²), а его объем равен Vш=(4/3)*πR³ или
Vш=(4/3)*(1/8)π(L²+b²)√(L²+b²)=(1/6)*(L²+b²)√(L²+b²).  (ответ).
Найдем объем пирамиды.
Опустим перпендикуляр SH из точки S на плоскость АВС. Основание этого  перпендикуляра Н попадет на прямую НВ в плоскости АВС вне треугольника  АВС. (То есть грань ASC не перпендикулярна плоскости основания).  Чтобы найти точку Н, надо в плоскости АВС провести перпендикуляры к  сторонам АВ и СВ в точки А и С. Их пересечение и даст нам искомую точку Н, в которую  проецируется вершина S пирамиды, так как по теореме, обратной теореме о  трех перпендикулярах, "прямая, проведенная в плоскости через основание  наклонной перпендикулярно к ней, перпендикулярна и к её проекции". Значит  SH - искомая высота. В равнобедренном треугольнике АВС отрезок ВР - высота,  биссектриса и медиана этого треугольника.
Тогда в прямоугольном треугольнике ВАН угол <ABH=(β/2), а гипотенуза  НВ=b/Cos(β/2). В прямоугольном треугольнике SHB по Пифагору катет SH=√ (SB²-HB²) или
SH=√[(√(L²+b²))²-(b/Cos(β/2))²]=√[(L²+b²)-(b²/Cos²(β/2)]
Объем пирамиды Vп=(1/3)*So*H. Или
Vп=(1/3)*b²Sinβ/2*√[(L²+b²)-(b²/Cos²(β/2)]. Или
Vп=(1/6)*b²Sinβ*√[(L²+b²)-(b²/Cos²(β/2)].  (ответ).

Проверим решение на конкретных числах.
Пусть b=4, L=3, β=60.
Тогда SB=√(L²+b²)=5.
PB=√(16+4)=√12=2√3.
AH=4√3/3,  SH=√(9-48/9)=√33/3. (первый вариант).
HP=2√3/3,  SP=√(L²-CP²)=√5.
SH=√(SP²-HP²)=√(5-12/9)= √33/3 (второй вариант).
HB=HP+PB=8√3/3.
SH=√(SB²-HB²)=√(25-199/9)=√33/3. (третий вариант).
Из моего решения:
SH=√[(L²+b²)-(b²/Cos²(β/2)]=√[(9+16)-(16*4/3]=√(11/3)=√33/3.

Восновании пирамиды sabc лежит равнобедренный треугольник abc: ав=вс=b, уголabc=бетта . рѐбра sa и s
4,4(40 оценок)
Ответ:
jakupovaalbina
jakupovaalbina
16.11.2020
1)24-6=18 см = а + в, отсюда в=18-а=АВ
медиана в равнобедренном треугольнике является и высотой ,значит треугольник АВД-прямоугольный
следует ,что  АВ=в= 18-а является гипотенузой  АВД, АД=а  -Ккатет АД
исходя из свойств гипотенузы и катета,получаем,что
           2      2       2
(18- а)   - а    = 6
раскроем скобки
                      2     2
324- 36 а + а   - а    =36

квадраты а сокращаются
остается 324-36 а=36
отсюда убираем минусы так как с обоих сторон 
остается 36 а= 324-36
                36а= 288
                    а=288 : 36
                    а=  8 см
18- 8 =10 см= АВ=ВС
АС= 8+8=16 так как медиана делит пополам
периметр АВС=10+10+16=36 см
4,6(74 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ