М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ssha2
ssha2
06.03.2021 07:34 •  Геометрия

Треугольник авс вписан в окружность с центром точки о точки о и с лежат на одной полуплоскости относительно прямой ав найдите угол асв если угол аов равен 167

👇
Ответ:
kravcukpolap08qwd
kravcukpolap08qwd
06.03.2021
∠AOB - центральный, потому что его вершина лежит в центре окружности, следовательно дуга AB на которую он опирается тоже = 167.
∠ACB опирается на ту же дугу что и ∠AOB, и т.к. он вписанный то равен половине дуги: 167/2 = 83,5
4,7(6 оценок)
Открыть все ответы
Ответ:
d диаметр основания конуса
l  образующая конуса
h высота конуса
d = l = 2 => осевое сечения конуса - правильный треугольник
со сторонами = d
1) Площадь осевого сечения конуса s:
s = h*d
h = d² - (d/2)² = d² - d²/4 = 3d²/4 = 3
s = h*d = 3*2 = 6 > 1,5
ответ: не может быть = 1,5
2) сечение, параллельное основанию, площадь которого равна 1
площадь сечения, параллельное основанию = от 0 до площади основания
площадь основания s:
s = πr² = πd²/4 = π*2²/4 = π
1∈]0;π[
ответ: может = 1
3) Наибольшая площадь треугольного сечения s:
s = 6 > 2
ответ: наибольшая площадь треугольного сечения не равна 2
4) сечения конуса
площадь осевого сечения = 6
площадь основания = π
ответ: не  существует сечение, площадь которого = 18
5) Расстояние от центра основания конуса до образующей
= (d/2)*sin60 = (2/2)√3/2 = √3/2
ответ: расстояние от центра основания конуса до образующей = √3/2
6) расстояние от вершины конуса до основания
это высота h = 3
ответ: не равно 2
4,5(67 оценок)
Ответ:
Nyrkoff
Nyrkoff
06.03.2021

Объяснение:

общем случае, геометрическое место точек формулируется параметрическим предикатом, аргументом которого является точка данного линейного Параметры предиката могут носить различный тип. Предикат называется детерминантом геометрического места точек. Параметры предиката называются дифференциалами геометрического места точек (не путать с дифференциалом в анализе).

Роль дифференциалов во введении видовых различий в фигуру. Количество дифференциалов может быть любым; дифференциалов может и вовсе не быть.

Если заданы детерминант {\displaystyle P(M,\;a,\;b,\;c,\;\ldots )}P(M,\;a,\;b,\;c,\;\ldots ), где {\displaystyle M}M — точка, {\displaystyle a,\;b,\;c,\;\ldots }a,\;b,\;c,\;\ldots  — дифференциалы, то искомую фигуру {\displaystyle A}A задают в виде: «{\displaystyle A}A — геометрическое место точек {\displaystyle M}M, таких, что {\displaystyle P(M,\;a,\;b,\;c,\;\ldots )}P(M,\;a,\;b,\;c,\;\ldots )». Далее обычно указывается роль дифференциалов, им даются названия применительно к данной конкретной фигуре. Под собственно фигурой понимают совокупность (множество) точек {\displaystyle M}M, для которых для каждого конкретного набора значений {\displaystyle a,\;b,\;c,\;\ldots }a,\;b,\;c,\;\ldots  высказывание {\displaystyle P(M,\;a,\;b,\;c,\;\ldots )}P(M,\;a,\;b,\;c,\;\ldots ) обращается в тождество. Каждый конкретный набор значений дифференциалов определяет отдельную фигуру, каждую из которых и всех их в совокупности именуют названием фигуры, которая задаётся через ГМТ.

В словесной формулировке предикативное высказывание озвучивают литературно, то есть с привлечением различного рода оборотов и т. д. с целью благозвучия. Иногда, в случае детерминантов, вообще обходятся без буквенных обозначений.

Пример: параболу зададим как множество всех таких точек {\displaystyle M}M, что расстояние от {\displaystyle M}M до точки {\displaystyle F}F равно расстоянию от {\displaystyle M}M до прямой {\displaystyle l}l. Тогда дифференциалы параболы — {\displaystyle F}F и {\displaystyle l}l; детерминант — предикат {\displaystyle P(M,\;F,\;l)=(\rho (M,\;F)=\rho _{l}(M,\;l))}P(M,\;F,\;l)=(\rho (M,\;F)=\rho _{l}(M,\;l)), где {\displaystyle \rho }\rho  — расстояние между двумя точками (метрика), {\displaystyle \rho _{l}}\rho _{l} — расстояние от точки до прямой. И говорят: «Парабола — геометрическое место точек {\displaystyle M}M, равноудалённых от точки {\displaystyle F}F и прямой {\displaystyle l}l. Точку {\displaystyle F}F называют фокусом параболы, а прямую {\displaystyle l}l — директрисой».

4,4(31 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ