1) прямые МР и NK могут быть параллельны, т.к. углы PMN и RNM являются односторонними (в сумме дают 180градусов) и раз уж они равны, значит по 90 градусов каждый => МР II NK
так же они могут пересекаться (точка Р накладывается на точку К). И при условии, что МР=NK получаем равнобедненный треугольник с основанием МN. А углы при основании такого треугольника равны.
ответ: 5)Пересекаются или параллельны
2)
пусть один из односторонних углов х (тупой), другой y(острый), тогда:
х-y=65
x+y=180
y=180-х
х-(180-х)=65
2х=65+180=245
х=122,5градуса
y=180-122,5=57,5градусов
y - это один из острых накрест лежащих углов (накрест лежащие углы равны) =>
2y=57,5*2=115градусов
ответ: 1)115 градусов
1) прямые МР и NK могут быть параллельны, т.к. углы PMN и RNM являются односторонними (в сумме дают 180градусов) и раз уж они равны, значит по 90 градусов каждый => МР II NK
так же они могут пересекаться (точка Р накладывается на точку К). И при условии, что МР=NK получаем равнобедненный треугольник с основанием МN. А углы при основании такого треугольника равны.
ответ: 5)Пересекаются или параллельны
2)
пусть один из односторонних углов х (тупой), другой y(острый), тогда:
х-y=65
x+y=180
y=180-х
х-(180-х)=65
2х=65+180=245
х=122,5градуса
y=180-122,5=57,5градусов
y - это один из острых накрест лежащих углов (накрест лежащие углы равны) =>
2y=57,5*2=115градусов
Пусть a и b - стороны прямоугольника, тогда:
а²+b²=5² (по теореме Пифагора)
a*b=12 (площадь прямоугольника)
Решаем систему уравнений:
Замена: пусть b²=t; t>0
Обратная замена:
b² = 9 или b² = 16
b = ±√9 b = ±√16
b = ±3 b = ±4
Отрицательные корни не рассматриваем, так как они не подходят по условию, значит стороны искомого прямоугольника 3 и 4 см.