высота разбивает треугольник на два маленьких. Эти прямоугольные треугольники равны соответствующим треугольникам по стороне (высота) и двум прилежащим углам (один угол прямой, другой равен 90 градусов минус равный угол).
Из равенства прямоугольных треугольников следует либо равенство трёх сторон исходного треугольника (две его стороны являются гипотенузыми сответственно равных прямоугольных треугольников, а третья является суммой катетов)
Либо равенство по стороне (составленной из катетов равных треугольников) и двум прилежащим углам
Рассмотрим получившиеся треугольники АВС и АДЕ: Угол А – общий. Углы АВС и АДЕ равны как соответственные углы образованные параллельными прямыми, пересеченными секущей Значит данные треугольники подобны по первому признаку подобия треугольников: Если два угла одного треугольника соответственно равны двум углам другого треугольника, то треугольники подобны. Сторона АЕ треугольника АДЕ равна АС+СЕ: АЕ=8+4=12 см. Зная это, мы можем найти коэффициент подобия треугольников: k=АЕ/АС=12/8=1,5 Найдем стороны треугольника АДЕ: АД=АВ*k=10*1.5=15 см. ДЕ=ВС*k=4*1,5=6 см. ВД=АД-АБ=15-10=5 см. ответ: ВД=5 см. ДЕ=6 см.
высота разбивает треугольник на два маленьких. Эти прямоугольные треугольники равны соответствующим треугольникам по стороне (высота) и двум прилежащим углам (один угол прямой, другой равен 90 градусов минус равный угол).
Из равенства прямоугольных треугольников следует либо равенство трёх сторон исходного треугольника (две его стороны являются гипотенузыми сответственно равных прямоугольных треугольников, а третья является суммой катетов)
Либо равенство по стороне (составленной из катетов равных треугольников) и двум прилежащим углам