Решить : в треугольнике abc сторона ab=3, высота , опущенная на сторону ab , равна 3. основание d высоты cd лежит на стороне ab, длина отрезка ad равна длине стороны bc . найти длину стороны ac .
S трапеции где а и в - основания трапеции h-высота
Из вершины угла меньшего основания опустим на большее основание перпендикуляр. Получатся 2 отрезка. Меньший из них равен : (большее основание - меньшее)\2 Так мы найдем меньший отрезок
Периметр равен: большее основание+меньшее+ 2*боковые стороны (т.к.они равны) Выразим из этой полученной формулы боковую сторону :(Периметр -(сумма оснований))\2 Так мы найдем боковую сторону
У нас есть меньший отрезок и боковая сторона. По формуле Пифагора выразим высоту
Затем подставим числа в формулу площади. Все. Решено.
В треугольнике АВО все углы равны по 60 градусов,т.к треугольник равносторониий угол АОВ является центральным углом и равен 60 градусам,а угол АСВ является вписанным,он равен половине соответствующего центрального угла и равен 30 градусовТ.к. треугольник ABC равносторонний, то все углы равны 60 градусов===>угол АOВ=60Т.к. угол АОВ центральный, то величина дуги АВ тоже равна 60.Угол АСВ вписанный, и опирается на дугу АВ. Т.к. он вписанный то угол будет равен половине величины дуги, тоесть уголАОВ=60/2=30 Или если просто из правила. Величина вписанного угла равна половине центрального угла опирающего на эту дугу. уголВСА=уголВОА/
1. Пусть точка D не совпадает с концами отрезка АВ (рис. 1).
Тогда AD < AB, AD < 3,
а ВС > СD, BC > 3 так как в прямоугольном треугольнике BCD гипотенуза BC больше катета.
Итак, AD < 3, а BC > 3, а по условию AD = BC, значит такое расположение точки D невозможно.
2. Точка D не может совпадать с точкой А, так как тогда длина отрезка AD = 0, и ВС = AD = 0.
3. Значит точка D совпадает с точкой В. В таком случае ΔАВС прямоугольный, равнобедренный.
По теореме Пифагора:
АС = √(АВ² + ВС²) = √(9 + 9) = √18 = 9√2