1. Дано: КМРТ - трапеция, КМ=РТ, КТ=14 дм, МР=8 дм. МН - высота, МН=4 дм. Найти КМ.
Решение: проведем высоту РС.
МР=СН=8 дм.
ΔКМН=ΔРСТ по катету и гипотенузе, КН=СТ=(14-8):2=3 дм.
Рассмотрим ΔКМН - прямоугольный, КН=3 дм, МН=4 дм, значит КМ=5 дм (египетский треугольник).
ответ: 5 дм.
2. Дано: КМСТ - прямоугольник, Р=56 см, КТ-МК=4 см. Найти МТ.
Решение: МК+КТ=56:2=28 см. Пусть КТ=х см, тогда МК=х-4 см.
Составим уравнение: х+х-4=28; 2х=32; х=16.
КТ=16 см; МК=16-4=12 см. Тогда по теореме Пифагора
МТ=√(16²+12²)=√(256+144)=√400=20 см.
(или просто: МТ=20 см, т.к. МК:КТ=12:16=3:4; МКТ - египетский треугольник)
ответ: 20 см.
Даны : А(2,1,0), М(3,-2,1), N(2,-3,0).
Находим координаты направляющего вектора прямой NM:
NM: (1; 1; 1).
Принимаем координаты направляющего вектора прямой NM как соответствующие координаты нормального вектора n плоскости α :
n = (A; B; C). То есть, A = 1, B = 1, C = 1.
Записываем уравнение плоскости, проходящей через точку А(2; 1; 0) и имеющей нормальный вектор n(A; B; C), в виде:
A(x -x1) + B(y - y1) + C(z - x1) - это и есть искомое уравнение плоскости, проходящей через заданную точку пространства перпендикулярно к заданной прямой.
Подставляем данные -
α: 1(x -2) + 1(y - 1) + 1z = x + y + z - 3 = 0.
ответ: уравнение плоскости α: x + y + z - 3 = 0.
- пирамида PMNKL (Р- вершина),
- её высота Н равна 8,
- угол α между боковой гранью и плоскостью основания равен 60°.
1) Найти объём пирамиды
Находим сторону а основания:
а = 2*(Н/tg α) = 2*(8/√3) = 16/√3.
Площадь основания So = a² = 256/3.
Объём пирамиды: V = (1/3)So*H = (1/3)*(256/3)*8 = 2048/9 ≈ 227,5556.
2) Найти величину угла между диагональю KM и гранью PKL.
Для этого надо спроецировать КМ на грань PKL, то есть провести плоскость, проходящую через отрезок КМ перпендикулярно плоскости PKL. Затем найти угол между диагональю КМ и её проекцией на грань PKL.
Удобнее всего спроецировать точку О (это основание высоты РО пирамиды и середина диагонали КМ).
Проведём осевую секущую плоскость перпендикулярно ребру основания KL. В сечении получим равнобедренный треугольник EPQ с высотой РО = Н.
Из точки О опустим перпендикуляр OU на PQ.
Отрезок QU, как лежащий против угла в (90-60=30°) равен половине OQ, то есть QU = (a/2)/2 = а/4 = 16/(4√3) = 4/√3.
Теперь перенесём этот отрезок в плоскость грани KPL на апофему PQ.
Апофема A = PQ = H/(sin 60°) = 8/(√3/2) = 16/√3.
Отсюда видим, что апофема A равна ребру а основания.
Поэтому угол между боковым ребром и ребром основания равен:
<PLK = arc tg (a/(a/2)) = arc tg 2 = 63,43495°.
Угол UKL = arc tg((4/√3)/(8/√3)) = arc tg (1/2) = 26,56505°.
Если продлить отрезок KU до пересечения с боковым ребром PL в точке Т, то получим треугольник KTL с двумя известными углами при ребре основания а и самим ребром а.
Угол KTL = 180°-63,43495°-26,56505° = 90°.
Находим длину КТ = KL*sin (<KLT) =a*(A/L) = a²/L (L - это боковое ребро).
L = √(A² + (a/2)²) = √((256/3)+(64/3)) = √(320/3).
KT = (256/3)/(√(320/3)) = 256/√960 = 256/(8√(15) = 32/√15.
Теперь находим искомый угол TKM из равнобедренного треугольника KTM по теореме косинусов:
a b c p 2p S 8,26236447 13,063945 8,2623645 14,794337 29,58867424 33,04945789 68,2666667 170,66667 68,266667 6,53197265 1,7303918 6,5319726 73,830051 1092,266667 33,04945789 cos A = 0,7905694 cos B = -0,25 cos С = 0,790569415 Аrad = 0,659058 Brad = 1,8234766 Сrad = 0,659058036 Аgr = 37,761244 Bgr = 104,47751 Сgr = 37,76124391
ответ: угол ТКМ = 37,761244°.