По теореме Пифагора второй катет равен: a = √10² - 6² = √64 = 8 см Площадь прямоугольного треугольника равна половине произведения его катетов, либо произведению гипотенузы на высоту: S = 0,5·8·6 = 24 см² h = 2S/c (h - высота, c - гипотенуза, S - площадь) h = 48/10 = 4,8 см. ответ: 4,8 см.
1. Т к стороны треугольника пропорциональны числам 5,6,8, то длины сторон треугольника, подобного данному 5k, 6k, 8k. Разность между наибольшей и наименьшей его сторонами равна 8k - 5k =15; k = 5. Длины сторон треугольника, подобного данному 25, 30, 40. 2. Т к углы треугольника пропорциональны числам 6,3,1, то эти углы равны 6* 180/10=108°, 3* 180/10=54°, 1* 180/10=18°. Биссектриса делит наибольший угол на равные части по 54°. Тогда треугольник, который биссектриса,проведенная из вершины наибольшего угла,отсекает от данного треугольника треугольник,подобен данному по двум углам: угол 18° общий и в каждом треугольнике есть угол 54°.
А) Да. Сумма смежных углов пар-грамма равна 180 градусов. Значит, сумма половин этих углов равна 90 градусов. Это и означает, что биссектрисы пересекаются под прямым углом. б) Нет. Центр описанной окружности лежит в точке пересечения серединных перпендикуляров к сторонам. На высоте ВК он лежит, только если треугольник равнобедренный, причем В вершина, а АС основание. в) Да. В равнобедренном треугольнике точка касания вписанной окружности и основания находится в середине основания. г) Нет. Пусть внешние углы равны а и 160-а, тогда внутренние равны 180-а и 180-(160-а) = 20+а. Сумма двух внутренних углов равна 180-а + 20+а = 200 градусов. А должно быть 180 градусов в ТРЕХ углах.
a = √10² - 6² = √64 = 8 см
Площадь прямоугольного треугольника равна половине произведения его катетов, либо произведению гипотенузы на высоту:
S = 0,5·8·6 = 24 см²
h = 2S/c (h - высота, c - гипотенуза, S - площадь)
h = 48/10 = 4,8 см.
ответ: 4,8 см.