Искомая площадь состоит из трех равных площадей треугольников, у которых есть высота - апофема боковой грани, нужно найти сторону основания. И тогда площадь боковой поверхности равна 3а*L/2, где а - сторона основания. Если соединить основание апофемы и и высоты пирамиды, получим проекцию апофемы на плоскость основания, и она равна (1/3) высоты треугольника, лежащего в основании. Зная апофему и угол между апофемой и высотой, найдем эту проекцию. Она равна L*sinα=а√3/2, отсюда сторона основания а =2L*sinα/√3=
2L*sinα*√3/3
Значит, площадь боковой поверхности равна (3*2L*sinα*√3/3)*L/2=
L²*√3sinα/ед. кв./
Медиана BM делит сторону AC на два равных отрезка AM = MC = 20/2 = 10.
Площадь треугольника S = 1/2 * BH * AC, откуда BH = 2 * S / AC = 2 * 96 / 20 = 9,6.
В треугольнике ABH по теореме Пифагора найдем AH = √( 10² - 9,6² ) = 2,8.
HM = HA + AM = 2,8 + 10 = 12,8.
В треугольнике MBH по теореме Пифагора найдем BM = √( 12,8² + 9,6²) = 16, что и требовалось найти.