Если прямая (DC), параллельна какой-нибудь прямой (AB), расположенной в плоскости (α), то она параллельна самой плоскости. Если плоскость проходит через прямую (DC), параллельную другой плоскости (α), и пересекает эту плоскость, то линия пересечения (EF) параллельна первой прямой (DC). Расстояние от прямой DC до плоскости α - это перпендикуляр из любой точки этой прямой на плоскость α. Итак, в прямоугольном треугольнике АЕD катет АЕ равен по Пифагору АЕ=√(AD²-DE²)=√(36²-18²)=18√3. Угол между двумя пересекающимися плоскостями равен углу между прямыми, по которым они пересекаются с любой плоскостью, перпендикулярной их линии пересечения. То есть угол между плоскостью α и плоскостью квадрата - это угол EAD, cинус которого равен отношению противолежащего катета к гипотенузе: Sinβ=ED/AD=18/36=1/2. Значит угол между плоскостями равен 30°. Площадь проекции квадрата на плоскость α - это площадь прямоугольника AEFB, равная S=AB*AE=36*18√3=648√3см²
Если изначально дан угол в 35 градусов, то достаточно уметь строить угол в 30 градусов, чтобы найти разность 35-30 = 5 градусов. 5 градусов - это одна седьмая от 35 градусов. 35/7 = 5. Построив угол в 5 градусов и далее, откладывая эти 5 градусов последовательно друг за другом (строя равные углы - это мы умеем), мы полностью исчерпаем данный в 35 градусов угол. Как построить угол в 30 градусов? Достаточно построить равносторонний треугольник (одна сторона которого лежит в начале луча - стороны данного в 35 градусов угла). Все углы равностороннего треугольника = 60 градусов, затем разделить пополам нужный угол этого треугольника (это стандартное построение).
R=√((1+3)^2+(1-2)^2+(-2+1)^2)=√18
уравнение сферы с центром В будет
(х-1)^2+(Y-1)^2+(Z+2)^2=18