Две прямые касаются окружности (радиусом 9 см) с центром О в точках Р и K и пересекаются в точке M. Найдите угол между этими прямыми, если ОМ = 18 см.
Объяснение:
Дано Окр О( R=9) , МР, МК-касательные , ОМ=18 см.
Найти ∠РМК.
Решение.
ΔРМО-прямоугольный, по свойству касательной. Т.к гипотенуза ОМ = 18 см, катет ОР =9 см в два раза меньше , то угол ∠РМО=30°.
Отрезки касательных к окружности, проведенных из одной точки М, равны и составляют равные углы ( это ∠РМО и ∠КМО ) с прямой, проходящей через эту точку и центр окружности ⇒∠РМО и ∠КМО.
Тогда ∠РМК=∠РМО + ∠КМО= 30°+30°=60°
ответ.∠РМК=60°
Если ссылаетесь на рисунок в условии задания, этот рисунок следует приложить.
Но данная задача понятна и без рисунка.
Высоты опущены из одной вершины. В параллелограмме более длинной является та высота, что проведена к стороне меньшей длины.
Площадь параллелограмма равна произведению его высоты на сторону, к которой она проведена.
Раз высота, равная 6, более длинная, она проведена к более короткой стороне.
S=6*9=54
Площадь этого параллелограмма можно найти и произведением другой высоты на большую сторону.
S=h*10
h=S:10
h=54:10=5,4