Найдите площадь поверхности прямоугольного параллелепипеда,если его длина,ширина и высота соответственно равны 3 см,4см,и 5 см,а площадь прямоугольника со сторонами а и в,находятся по формуле s=ab
В прямоугольном параллелепипеде три пары равных граней (противоположных). Следовательно, площадь полной поверхности данного параллелепипеда равна: S=2*(3*4)+2(3*5)+2*(4*5)=94см² Это ответ.
Сечение куба проходит по двум параллельным ребрам оснований и двум диагоналям параллельных граней. Т.е. это прямоугольник АВС₁D₁. Так как грани куба - квадраты, их диагонали равны длине стороны квадрата, умноженной на √2. Обозначив длину ребра куба а, получим: d=ВС₁=АD₁=a√2 Тогда S☐= а*а√2=25√2 а=√25=5 см Диагональ куба находят по формуле D=а√3 Отсюда D=5√3. ----------------- Так как диагональ куба лежит в плоскости его диагонального сечения, она совпадает с диагональю сечения, которое дано в условии. Поэтому можно найти диагональ куба и как диагональ этого сечения по т. Пифагора с тем же результатом.
Сечение куба проходит по двум параллельным ребрам оснований и двум диагоналям параллельных граней. Т.е. это прямоугольник АВС₁D₁. Так как грани куба - квадраты, их диагонали равны длине стороны квадрата, умноженной на √2. Обозначив длину ребра куба а, получим: d=ВС₁=АD₁=a√2 Тогда S☐= а*а√2=25√2 а=√25=5 см Диагональ куба находят по формуле D=а√3 Отсюда D=5√3. ----------------- Так как диагональ куба лежит в плоскости его диагонального сечения, она совпадает с диагональю сечения, которое дано в условии. Поэтому можно найти диагональ куба и как диагональ этого сечения по т. Пифагора с тем же результатом.
Следовательно, площадь полной поверхности данного параллелепипеда равна: S=2*(3*4)+2(3*5)+2*(4*5)=94см² Это ответ.