Пусть АВС - треугольник, АД - медиана, проведенная из вершины А на сторону ВС, СЕ - медиана, проведенная из вершины С на сторону АВ. Медианы АД и СЕ пересекаются в точке М. Точка пересечения медиан делит каждую из медиан на две части в отношении 2:1, считая от вершины. Так как медианы равны, то равны и части медиан АМ=СМ и ЕМ=ДМ. Следовательно треугольники АЕМ и ДМС равны по двум сторонам и углу между ними (угол ЕМД=угол ДМС, как вертикальные углы) Значит стороны, лежащие против равных углов равны, то есть АЕ=ДС. Но АЕ - это половина стороны АВ, ДС - это половина стороны ВС, Значит АВ=ВС, треугольник АВС - равнобедренный.
1)начнем с того, что это равнобедренная трапеция. углы при основаниях равны. то есть угол а=в=(360-120*2)/2=60 градусов; d=c=120 градусов. 2)затем делаем дополнительные построения -высота dh и ck перпендикулярные ab, тогда ah=kb=14-8/2=3 3)теперь рассматриваем отдельно треугольник adh: уголahd=90(dh-высота) угол dah=60 сумма всех углов =180, тогда угол adh=180-90-60=30 4) рассмотрим опять этот треугольник угол adh=30 сторона ah=3, тогда ad=ah*2(катет прямоугольного треугольника лежащий против угла в 30 градусов равен половине гипотенузы) и получается, что ad=cb=6. отсюда - периметр равен сумме всех сторон, то есть 8+14+6+6=34
Вот картинка как выглядит координатная плоскость. Найдите все точки на координатной плоскости и по порядку соедините. http://900igr.net/datas/algebra/Koordinatnaja-ploskost-6-klass/0001-001-Koordinatnaja-ploskost.jpg Как доказать. У параллелограмма противолежащие углы равны. Доказательство. Пусть ABCD – данный параллелограмм. И пусть его диагонали пересекаются в точке O. Из доказанного в теореме о свойства противолежащих сторон параллелограмма Δ ABC = Δ CDA по трем сторонам (AB=CD, BC=DA из доказанного, AC – общая). Из равенства треугольников следует, что ∠ ABC = ∠ CDA. Так же доказывается, что ∠ DAB = ∠ BCD, которое следует из ∠ ABD = ∠ CDB. Теорема доказана.
Точка пересечения медиан делит каждую из медиан на две части в отношении 2:1, считая от вершины. Так как медианы равны, то равны и части медиан АМ=СМ и ЕМ=ДМ.
Следовательно треугольники АЕМ и ДМС равны по двум сторонам и углу между ними (угол ЕМД=угол ДМС, как вертикальные углы)
Значит стороны, лежащие против равных углов равны, то есть АЕ=ДС.
Но АЕ - это половина стороны АВ, ДС - это половина стороны ВС,
Значит АВ=ВС, треугольник АВС - равнобедренный.