Для определения площади параллелограмма достаточно трёх точек.
Площадь равна модулю векторного произведения векторов АВ и ВС.
Находим векторы ВА и ВС.
ВА = (-3-2; 1-6) = (-5; -5),
ВС = (7--2; -1-6) = (5; -7)
Находим векторное произведение ВА и ВС.
i j k| i j
-5 -5 0| -5 -5
5 -7 0| 5 -7 = 0i + 0j + 35k - 0j - 0i + 25k = 0i + 0j + 60k.
Найдем модуль вектора:
|c| = √(cx² + cy² + cz²) = √(0² + 0² + (-60)²) = √(0 + 0 + 3600) = √3600 = 60
Найдем площадь параллелограмма:
S = 60.
Напишите уравнение окружности, проходящей через точки
A (-3; 0) и B (0; 9), если известно, что центр окружности лежит на оси ординат.
Объяснение:
Если центр лежит на оси ординат, то координаты центра О(0 ;у₀).
Тогда уравнение окружности (x – х₀)²+ (y – у₀)² = R² примет вид :
(x – 0)²+ (y – у₀)² = R² или х ²+ (y – у₀)² = R² . Т.к. точки А и В принадлежат окружности, то координаты точек удовлетворяют уравнению окружности
Получили систему.
{ (-3)²+ (0 – у₀)² = R² ,{ 9+ у₀² = R²
|{ 0²+ (9 – у₀)² = R² ,|{ (9 – у₀)² = R², приравняем левые части
9+ у₀²= (9 – у₀)² → 9+ у₀²= 81 –18у₀+ у₀² , 18у₀=72 , у₀=4 .
Найдем R : 9+ 4² = R² , R²=25 , учитывая , что R>0 , получаем R=5.
Координаты центра О(0;4) , R=5 → x ²+ (y –4)² = 5²
2). Пусть внешний угол при основании равен 70 градусов, тогда угол при основании равен 110 градусов, тогда сумма двух углов равна 220 градусов, что неверно, т.к. сумма углов в треугольнике равна 180 градусам.
ОТВЕТ: 110+35+35.