Задача 1:
1. Рассмотрим треугольники ABD и ACD:
Угол 1 равен углу 2 -по условию
AD- общая => треугольник ABD равен треугольнику ACD по гипотенузе и острому углу
2. Из рав-ва треугольников следует рав-во соответствующих элементов:
AB=CD
ч.т.д.
Задача 2:
1. Рассмотрим треугольники ABD и BCD:
AD=BC- по условию
AB=CD- по условию
BD - общая => треугольник ABD равен треугольнику BCD
2. Из рав-ва треугольников следует рав-во соответствующих элементов:
Угол BDC равен углу DBA
3. Рассмотрим треугольники ABF и CDE:
AB=CD- по условию
Угол EDC (BDC) равен углу FBA (DBA)- по доказанному => треугольник ABF равен треугольнику CDE- по гипотенузе и острому углу
4. Из рав-ва треугольников следует рав-во соответствующих элементов:
BF=ED, AF=EC
ч.т.д.
Задача 1:
1. Рассмотрим треугольники ABD и ACD:
Угол 1 равен углу 2 -по условию
AD- общая => треугольник ABD равен треугольнику ACD по гипотенузе и острому углу
2. Из рав-ва треугольников следует рав-во соответствующих элементов:
AB=CD
ч.т.д.
Задача 2:
1. Рассмотрим треугольники ABD и BCD:
AD=BC- по условию
AB=CD- по условию
BD - общая => треугольник ABD равен треугольнику BCD
2. Из рав-ва треугольников следует рав-во соответствующих элементов:
Угол BDC равен углу DBA
3. Рассмотрим треугольники ABF и CDE:
AB=CD- по условию
Угол EDC (BDC) равен углу FBA (DBA)- по доказанному => треугольник ABF равен треугольнику CDE- по гипотенузе и острому углу
4. Из рав-ва треугольников следует рав-во соответствующих элементов:
BF=ED, AF=EC
ч.т.д.
ВС = АС - АВ
1) BC = 7,2 - 3,7 = 3,5 см
2) BC = 4 см - 4 мм = 40 мм - 4 мм = 36 мм
BC = 4 см - 4 мм = 4 см - 0,4 см = 3,6 см
ответ : 3,5 см; 3,6 см