1) Рассмотрим треугольники ВАД и СДА -прямоугольные, у них: АД-общая, АВ=СД по условию, ⇒ ΔВАД=ΔСДА по двум катетам; но в равных треугольниках соответственные углы равны,⇒∠В = ∠С, чтд 2)Рассмотрим треугольники ВАД и СДА -прямоугольные, у них: АД-общая, ∠1=∠2 по условию, ⇒ ΔВАД=ΔСДА по гипотенузе и острому углу; но в равных треугольниках соответственные стороныравны,⇒АВ=СД , чтд 3)Рассмотрим треугольники АВК и АСH -прямоугольные, у них: ∠A- общий, гипотенузы АВ и АС равны АВ=АС по условию, ⇒ ΔАВК=ΔАСH по гипотенузе и острому углу, чтд
Объяснение:
120см
Объяснение:
Дано: ВС = 40см; АЕ - биссектриса угла А; ВЕ = ЕС
Найти: периметр P прямоугольника АВСD
Биссектиса АЕ делит угол А прямоугольника АВСD пополам т.е.
∠BAЕ = 45°.
Поскольку ΔАВЕ прямоугольный (∠В = 90°), то оставшийся угол
∠ВЕА этого треугольника равен ∠ВЕА = ∠В - ∠ВАЕ = 90° - 45° = 45°.
Следовательно, ΔАВЕ равнобедренный, и АВ = ВЕ.
А поскольку ВЕ = 0,5ВС = 0,5 · 40 = 20(см), то и меньшая сторона АВ прямоугольника АВСD равна 20см.
Тогда периметр прямоугольника Р = 2 · (АВ + ВС) = 2 · (20 + 40) = 120(см)
4x=40 5x=40
x=10 x=8
2*10=20 2*8=16