Медианы делятся точкой пересечения в отношении 2:1. Так как треугольник равнобедренный, то расстояния в 8 см будут до его боковых сторон, а 5 см - до основания. До вершины - 2*5=10 см. В равнобедренном треугольнике медиана на основание - его высота. Обозначив за Х половину длины основания, а за У отрезок боковой стороны, получим из двух прямоугольных треугольников с общей гипотенузой 5^2+X^2=8^2+Y^2. Вторую часть боковой стороны определим из треугольника К=V(10^2-8^2)=6 cm. Из треугольника, где катетом является высота, нахоим второе уравнение - 15^2+X^2=(6+Y)^2. Раскрыв скобки и прибавив по 200 к левой и правой частям первого уравнения, получим 36+12у+y^2=y^2+264, отсюда у=19 см, а подставив в первое уравнение значения у, найдем х=20 см. Тогда стороны равны - 25, 25 и 40 см.
Существует равнобедренный ∆,с углом при основании 34°,т.к углы при основании равнобед.∆=,значит сумма углов при основании= 68°,а сумма всех углов∆=180°,значит третий угол в ∆=180-68=112°. Другие варианты не подходят, т.к не соответствуют теореме: сумма углов ∆=180°,и они в сумме дают больше180°,а этого быть не может(например для 1) если один угол при основании=94°,значит и второй угол при основании =94°,т.к углы при основании в равнобедреном треугольнике=,значит 94+94=188,а этого уже не может быть,т.к в ∆ есть еще и третий угол,а в сумме все три угла должны равняться 180°,а у тебя только два в сумме дали 188,это противоречит теореме,а значит такой ∆ не существует,для 2) и 3)-такое же доказательство)
Медианы делятся точкой пересечения в отношении 2:1. Так как треугольник равнобедренный, то расстояния в 8 см будут до его боковых сторон, а 5 см - до основания. До вершины - 2*5=10 см. В равнобедренном треугольнике медиана на основание - его высота. Обозначив за Х половину длины основания, а за У отрезок боковой стороны, получим из двух прямоугольных треугольников с общей гипотенузой 5^2+X^2=8^2+Y^2. Вторую часть боковой стороны определим из треугольника К=V(10^2-8^2)=6 cm. Из треугольника, где катетом является высота, нахоим второе уравнение - 15^2+X^2=(6+Y)^2. Раскрыв скобки и прибавив по 200 к левой и правой частям первого уравнения, получим 36+12у+y^2=y^2+264, отсюда у=19 см, а подставив в первое уравнение значения у, найдем х=20 см. Тогда стороны равны - 25, 25 и 40 см.