Пусть дан треугольник ABC,где угол А = 45 °. ВН-высота ;
АН = 6 (см) , НС = 10 (см). Найдём S треугольника.
Рассмотрим треугольник АВН : угол А = 45 ° (по условию), значит угол АВН = 45 °. Следовательно треугольник равнобедренный и АН = НС = 6 (см) ,найдём АС.
АС = АН + НС = 6 + 10 = 16 (см)
Рассмотрим ВН: в равнобедренному треугольнике высота, проведенная к основанию, является медианой и биссектрисой.
Найдём высоту по формуле ВН=1/2*АС.
ВН = 1/2 * 16 = 8 (см)
S тр. = S= 1/2 АС * ВН
S тр. = 1/2 * 16 * 8 = 64 (см)
угол D=60°, угол С=90°, угол А=30°, угол С=30° и угол В=120°
Объяснение:
Проведенная диагональ АС делит этот параллелограмм АВСD на два треугольника: равнобедренный треугольник АВС и прямоугольный треугольник АСD.
Так как АСD прямоугольный треугольник, то угол С=90°.Итак у нас есть угол D(60°) и угол С(90°), находим угол А. Так как сумма углов треугольника равна 180°, получаем: 180°-уголD(60°)-уголС(90°)=30° -угол А. Итак мы нашли все углы прямоугольного треугольника АСD.
Перейдем к треугольнику АВС. Так как угол А=30°, то и угол С тоже будет 30° так как в равнобедренном треугольнике углы при основании равны. Получаем что угол А=30° и угол С=30°. И так как сумма углов треугольника равна 180°, получаем: 180°-уголА(30°)-уголС(30°) =120° -угол В.
Задача решена.
1. расположение в одной плоскости т.Е-m-n, 2 см между m и n
2. расположение в одной плоскости m-т.Е-n, 4 см между n и m
3. т.Е расположена на расстоянии от 0 до 1 от плоскости расположения прямых, приизменении расстояния от0 до 1 - растояние между прямыми будет меняться от 4 до √8