Найдите углы равнобедренного треугольника, если один из его углов в пять раз меньше суммы двух других.
============================================================
Пусть ∠А = ∠С = х , ∠В = у, тогдаРассмотрим 2 случая решения данной задачи:Первый случай:∠В = ( ∠А + ∠С )/5у = 2х/5Сумма всех углов в треугольнике составляет 180° ⇒∠А + ∠В + ∠С = 180°х + 2х/5 + х = 18х°12х/5 = 180°х = 75°Значит, ∠А = ∠С = 75° , ∠В = 30°Второй случай:∠А = ( ∠В + ∠С )/5х = ( у + х )/55х = у + ху = 4хСумма всех углов в треугольнике составляет 180° ⇒∠А + ∠В + ∠С = 180х + 4х + х = 180°6х = 180°х = 30°Значит, ∠А = ∠С = 30° , ∠В = 120°ОТВЕТ: 30°, 75°, 75° ИЛИ 30°, 30°, 120°
Обозначим длину балки x
Следовательно растояние на котрое опустилась балка 0,2x
Обозначим растояне между верхним концом балки и полом y
Можно составить уравнение y+0,2x=x (длина балки)
Отсюда выразим y. y=x-0,2x=0,8x
По теореме Пифагора следует: 2^2=x^2-(0,8x)^2
Прорешав данное уравнение получим 2=0,6x
Отсюда x примерно= 3,3