Рисунок к заданию во вложении
По рисунку,
Дано:
флагшток, тросс и расстояние от точки основания флагштока до места крепления троса на земле, составляют прямоугольный треугольник, где:
флагшток (b) - катет
расстояние от основания до места крепления (а) - катет
тросс (с) - гипотенуза
флагшток, закрепленный вертикально, перпендикулярен земле угол, между а и b = 90°.
Найти: длину катета а.
Решение: по теореме Пифагора:
c²=a²+b²
a=√(c²-b²)
c=6.5 м
b=6.3 м
a=√(6.5²-6.3²) м
a=√2.56 м
a=1.6 м
ответ: расстояние от точки основания флагштока до места крепления троса на земле равно 1.6 м
Сначала проверим задачу на здравый смысл: если треугольник равнобедренный, то углы при основании равны. Если же мы рассматриваем угол при основании равный 96, то тогда и второй угол при основании будет равен 96. Такого быть не может. Остаётся только вариант, когда угол в 96 градусов-это угол при вершине треугольника.
Ищем два оставшихся угла: Из суммы углов треугольника (это 180*), мы вычитаем 96* (это угол при вершине). Делим полученные число 84 на 2, так как имеем два равных угла при основании. Каждый из них равен по 42 градуса. ответ: 42*