Координаты середины отрезка равны полусумме соответствующих координат начала и конца отрезка. Следовательно,
1). Xd=(Xa+Xb)/2 => Xa=2*Xd - Xb => Xa= -2-8= -10.
Yd=(Ya+Yb)/2 => Ya=2*Yd - Yb => Ya= 14-5= 9. Точка А(-10;9)
2). Xb=2*Xd - Xa => Xb=8-3=5. Yb=2*Yd - Ya => Yb= -4-0= -4. Точка B(5;-4).
Параллелограмм - четырехугольник, у которого две противоположные стороны равны и параллельны. В данном нам четырехугольнике сторона АВ=√((Xb-Xa)²+(Yb-Ya)²)=√((-7-2)²+(0-(-5))²)=√(81+25)=√106.
CD=√((Xd-Xc)²+(Yd-Yc)²)=√((3-(-6))²+(-4-1)²)=√(81+25)=√106.
Итак, противоположные стороны АВ и CD равны. Условие параллельности векторов: координаты векторов должны быть пропрпциональны, то есть их отношение должно быть равно. В нашем случае вектора АВ и CD имеют координаты: АВ{-9;5}, a CD{9;-5}. Xab/Xcd=Yab/Ycd= -1, то есть АВ параллельна CD.
Таким образом, четырехугольник АBCD - параллелограмм, что и требовалось доказать.
10. Площа трикутника дорівнює добутку радіусу r вписаного кола і полупериметра р.
r=(a+b-c):2 , де а та b - катети, c -гіпотенуза.
a+b=P-с=60-c
r=(60-c-c):2=30-c
Також r=S:p; тоді
S=h*c:2
S=12*c:2=6c
р=60:2=30
r=6c/30=c/5
Отже
c/5=30-c
150-5c=c
6c=150
c=25 см
r=25/5=5 см
S=r*p=5*30=150 см².
Відповідь: 150 см²
12. Нехай дано трикутник АВС - прямокутний, ∠ А - 90°, ВС - гіпотенуза. ВС=32+18=50 см.
АН - висота.
Площа трикутника дорівнює 1\2 * ВС * АН.
АН=√(ВН*СН)=√(32*18)=√576=24 см.
S = 1\2 * 50 * 24 = 600 cм²
Відповідь: 600 см²
<CAD=<DAM=>
<A=<CAD+DAB
<A=62'
Пот теореме^ Сумма углов Треугольника =180' =>
<B=180-<A-<C=180-62-63=180-125=55'
ответ: <B=55'