Можно с решением.. ваня разрезал лист ватмана на 2 прямоугольные части.потом он нашёл,что периметры этих частей равны 70см и 90см.кроме того,он помнит,что длина большей стороны листа ватмана была равна 30 см.найдите площадь этого листа
А) Пирамида правильная, значит в основании лежит квадрат. Боковое ребро пирамиды составляет с высотой и половиной диагонали основания прямоугольный треугольник, в котором высота (катет) лежит против угла 30° и значит равна половине бокового ребра (гипотенуза). h=5см. б) Диагонали квадрата точкой пересечения делятся пополам под прямым углом. Половину диагонали найдем по Пифагору: d=√(10²-5²)=√75=5√3см Сторону найдем по Пифагору: а=√(75+75)=√150=5√6см. ответ: высота пирамиды 5см, сторона основания 5√6см.
Доказательство опирается на то, что серединные перпендикуляры к сторонам тоже пересекаются в одной точке. Проведём через каждую вершину ΔABC прямую, параллельную противоположной стороне. Раз стороны ΔABC параллельны сторонам ΔA₂B₂C₂, то AB, BC и AC - средние линии (т.к. параллельны и равны половине данных сторон, это следует из того, что C₂BCA, ABCB₂, ABA₂C - параллелограммы, а как известно, противоположные стороны параллелограммов равны). Тогда прямые AA₂, BB₂ и CC₂ будут отсекать от сторон треугольников равные отрезки. Опять же, т.к. стороны ΔABC параллельны сторонам ΔA₂B₂C₂, то A₁A ⊥ C₂B₂, B₁B ⊥ C₂A₂, C₁C ⊥ A₂B₂, т.к. если две прямые параллельны, то прямая, перпендикулярная одной из них, будет перпендикулярна и второй. Тогда AA₁, BB₁, CC₁ - перпендикуляры к сторонам Δ₂B₂C₂. Но выше доказано, что AA₁, BB₁, CC₁ отсекают от сторон треугольника равные отрезки. Тогда AA₁, BB₁, CC₁ - серединные перпендикуляры к сторонам ΔA₂B₂C₂. Серединные перпендикуляры пересекаются в одной точке. Но т.к. AA₁, BB₁, CC₁ - высоты ΔABC, то и высоты будут пересекаться в одной точке.
S = 750 cм².
Объяснение:
1. В соответствии с данным рисунком:
P1 = 2(x + z) = 70 cм. Р2 = 2(y+z) = 90 cм.
х + y = 30. => y = 30-x.
x + z = 35. (1)
30-x +z = 45. (2)
Сложим (1) и (2).
2z + 30 = 80.
z = 25 см.
S = 30·25 =750 см²