1. Найти угол между векторами AС и АB.
*Можно искать не косинус угла, а найти длину вектора BC, тогда ΔABC -- равносторонний и углы равны по 60°.
2. Найти координаты центра сферы и длину ее радиуса. Найти значение m.
Приведём уравнение к общему виду (x - x₀)² + (y - y₀)² + (z - z₀)² = R²:
Тогда O (x₀; y₀; z₀) -- центр сферы, O (0; 1; -2),
R² = 16 ⇒ R = 4
Если точка принадлежит сфере, то подставив её координаты в уравнение, получится верное равенство. Подставим точки A и B в уравнение сферы:
3. Найти уравнение плоскости α.
Ax + By + Cy + D = 0 -- общее уравнение плоскости.
n = (A; B; C) -- вектор нормали ⇒ A = 1, B = 2, C = 3, тогда
Если точка принадлежит плоскости, то подставив её координаты в уравнение, получится верное равенство:
4. Найти общее уравнение прямой.
Общее уравнение прямой представляет собой систему уравнений двух пересекающихся плоскостей. Решение этой системы есть пересечение плоскостей, то есть прямая.
Зададим прямую параметрически:
Исключим параметр λ:
Последняя система -- это общее уравнение прямой.
б) ∠A-∠B=55*. Обозначим угол В через х. Тогда угол А равен х+55.
Сумма углов в четырехугольнике равна 360*. Составим уравнение:
(х+х+55)*2=360*;
4х=360-110;
4х=250;
x=62,5* - угол В;
62,5+55=117,5* - угол А.
В параллелограмме противоположные стороны и углы равны
в) ∠А+∠С=142*; ∠А=∠С = 142:2=71*;
∠В=∠D=180*-71*=109*;
г) ∠А = 2∠В; ∠В обозначим через х, то ∠А=2х;
В сумме все углы дают 360*. Составим уравнение:
(х+2х)*2=360;
6х=360;
х=60* - угол В.
60*2=120* - угол А.
д) ∠CAD = 16, ∠ACD = 37°;
∠B=∠D=180*-(16+37)=127*;
∠A=∠C=(360*-127*2)/2=53*.
Как-то так... :))) Удачи! Надеюсь разберетесь...
Х+9х=180
10х=180
Х=180:10
Х=18°(1угол)
18•9=162°(2угол)