Чертим ромб АВСD, его стороны по 10см, угол А=30. Диагонали его пересекутся под прямым углом в точке О и этой точкой поделятся пополам. Из точки О проведем перпендикуляр ОН к стороне АВ. ОН и есть радиус вписанной в ромб окружности. Найдем диагональ ромба ВD по теореме косинусов:
BD^2=AB^2+AD^2-2*AB*AD*cosA=100+100-2*10*10*cos30=200-100*√3=27
BD=5,2см ВО=5,2/2=2,6см
По теореме Пифагора АО^2=АВ^2-BO^2=100-6,76=93,24
Сейчас работаем с треугольником АОВ. Его площадь можно найти двумя Отсюда выразим ОН:
ОН=2S/АВ=25/10=2,5см.
ответ: 2,5см.
Дано: окружность, т.О - центр, ABCDEF - впис. прав. 6-угольник, АВ= 7 см, MNK - впис. прав. треугольник.
Найти: Рmnk.
Решение.
1) Радиус описанной окружности всегда равен стороне правильного шестиугольника, поэтому сразу делаем вывод, что радиус данной окружности равен стороне данного правильного шестиугольника. R=AB= 7 см.
2) Радиус описанной окружности правильного треугольника, выраженный через его сторону, равен:
R= √3/3 • а, где R - радиус, а "а" - сторона прав. треугольника.
Находим сторону треугольника ΔMNK.
7= √3/3 • MN;
MN= 7: √3/3;
MN= 7• 3/√3;
MN= 21/√3= 21√3/3= 7√3 (см)
3) Периметр треугольника MNK
Pmnk= 3MN= 3•7√3= 21√3 (см)
ответ: 21√3 см.
извиняюсь, но два задания не сделала, так как не совсем поняла.
удачи тебе)