1) Раз ВО разделила угол В пополам, то угол ОВС=1/2 углаВ=160/2=80о. Отношение 3:5 показывает, что угол В разделен на 8 частей и 3 части, т. е. 160/8*3=60о приходится на угол АВЕ, а 160/2*5=100о приходится на угол ЕВС. Отсюда угол ЕВО= разности между углами ЕВС и ОВС, т. е. 100о-80о=20о. Получается, что на чертеже луч ВЕ расположен правее луча ВО. 2) Обозначим высоту ВН. Р тр-ка АВН: АВ+АН+5=18; Р тр-ка НВ: ВС+НС+5=26. Сложим эти равенства: АВ+АН+ВС+НС+10=44; АВ+ВС+(АН+НС) =34; АВ+ВС+АС=34, а левая часть это и есть периметр тр-ка АВС. 3) Взят острый угол между высотами 20о. Значит смежный с ним будет 160о. Теперь мы можем определить угол при вершине: 360о-160о-2*90о=20о. (Сумма внутренних углов в выпуклом четырехугольнике равна 360о. ) Тогда на долю двух углов при основании приходится 180о-20о=160о, а на долю каждого по 80о, т. к. углы при основании в равнобедренном тр-ке равны.
Шеф, здесь собственно как бы нечего решать. Поскольку треугольник одновременно является и прямоугольным, и равнобедренным, то высота, проведённая к гипотенузе равна половине гипотенузы. Просто втыкаешь в формулу h = MK / 2 = 18 / 2 = 9 см - это и есть ответ.
Это свойство такого треугольника вытекает из того факта, что середина гипотенузы, она же точка куда приходит высота, одновременно также является центром описанной окружности, следовательно как половина гипотенузы, так и высота - все они являются радиусами одной и той же окружности, следовательно равны друг другу. Отсюда и использованная формула.
угол С = 82°
Объяснение:
обозначим углы: х; х+34; х+34+16
х+х+34+х+34+16=180°
3х=96°
х=32°
углы треугольника равны: 32°; 66°; 82°
угол С равен 82°