чертежи в приложении
задача 1
Боковая сторона равна 11 см.
Большее основание равно 15 см.
Меньшее основание равно 5 см.
Объяснение:
пусть ВС -меньшее основание =х, тогда АД=3х и АВ=СД=х-+6
периметр -это сумма длин всех сторон ,значит:
АВ+ВС+СД+АД=Р
(х+6)+х+(х+6)+3х=42
6х=30
х=5 и=ВС , тогда АД=3х=15, АВ=СД=х+6=5+6=11
Проверка (для себя): 11+5+11+15=42
задача 2
43 см
Объяснение: чертеж в приложении
1) рассм четырехугольник NBCD - параллелограмм , тк ВС||ND (ведь основания трапеции параллельны ), BN||CD (по усл). тогда ND =ВС=4 и
2) СД=BN (как стороны параллелограмма )
3) Р трапеции =АВ+ВС+СД+АД= АВ+ВС+BN+AN+ND=АВ+ВС+BN+AN+BC=
=АВ+BN+AN+2*BC=Pтреуг+2*ВС=35+2*4=43
Если что-то непонятно , пишите в комментах.
Успехов в учёбе! justDavid
Внутри параллелограмма ABCD отмечена произвольная точка G.докажите,что сумма площадей треугольников CGD и AGB равна половине площади данного параллелограмма.
S ᐃ АGВ = hAB:2, где h- высота этого треугольника.
S ᐃ СGD =(Н-h)СD:2, где Н высота параллелограмма, проведенная к АВ и СD.
Она перпендикулярна параллельным АВ и СD, равна сумме высот рассматриваемых треугольников и проходит через точку G.
Так как АВ=СD, можем записать площадь S ᐃ СGD через АВ:
S ᐃ СGD =(Н-h)·АВ:2
Сложим площадей этих треугольников:
S ᐃ АGВ +S ᐃ СGD=hAB:2+(Н-h)·АВ:2=hAB:2 + Н·АВ:2- h АВ:2=Н·АВ:2
S <> АВСD=Н·АВ.
Сумма площадей указанных треугольников Н·АВ:2 равна половине площади параллелограмма АВСD, что и требовалось доказать.