Расстояние от точки М до плоскостми-это длина отрезка перпендикуляра от точки М до плоскости квадрата. Точка М равоудалена от вершин квадрата : MA=MB=MC=MD=6 cm. В квадрате ABCD проведем диагонали. Точка пересечения -точка О- равноудалена от каждой из вершин квадрата. Точка О является проекцией точки М на полоскость треугольника. Треугольники: ΔAOM=ΔBOM=ΔCOM=ΔDOM (MA=MB=MC=MD., MO-общая сторона, ∠AOM=∠BOM=∠COM=∠DOM=90°). Из треугольника ΔAOM найдем проекцию наклонной или 1/2 диагонали квадрата. AM²=MO²+AO², 6²=4²+AO², AO²=36-16=20, AO=√20=2√5(cm). AC=BD=2AO=2·2√5=4√5(cm). Из ΔABC : AC²=AB²+BC², AB=BC, (4√5)²=2AB², 2AB²=16·5, AB²=8·5=4·2·5=4·10, AB=√4·10=2√10(cm). AB=2√10cm.
Пусть будет ромб АВСD, проведём диагонали, они пересекутся в точке Н. Диагонали ромба, как известно, перпендикулярны, к тому же точкой пересечения делятся пополам, значит, ВН=HD, АН=НС=АС\2=2. Тогда ВН= Кстати, все четыре получившихся треугольника равны по трём сторонам. Синус угла АВН = , тогда сам угол равен 41 градус 49 минут. Второй острый угол этого треугольника равен 48 градусов 11 минут. Тогда угол B = угол D = 2*(41 градус 49 минут)=83 градуса 38 минут. Угол А = угол С = 2*(48 градусов 11 минут)=96 градусов 22 минуты. ответ: 83 градуса 38 минут и 96 градусов 22 минуты.
2. Угол AOD =180 градусов -угол ABO= 180 градусов - 63 градуса= 117 градусов (т.к. ABO и AOD-смежные)