Двугранный угол, образованный полуплоскостями измеряется величиной его линейного угла, получаемого при пересечении двугранного угла плоскостью, перпендикулярной его ребру (то есть перпендикулярной к обеим плоскостям). Следовательно, четырехугольник, образованный линейным углом данного двугранного угла, лежит в плоскости, перпендикулчрной ребру этого угла, является выпуклым и имеет три угла, равные 100°, 90° и 90°. Так как сумма внутренних углов четырехугольника равна 360°, то искомый угол равен 360° -280° = 80°.
ответ: 80°.
△ABC=△MPC (по двум катетам) => ∠A=∠CMP
CMOP - прямоугольник (три прямых угла)
∠CMF=∠MCF (диагонали прямоугольника равны и точкой пересечения делятся пополам, △CMF - равнобедренный)
∠MCF=∠BCD (вертикальные углы)
∠A=∠BCD
∠A+∠B=90° => ∠BCD+∠B=90° => ∠CDB=90°