Пусть Н-проекция высоты на основание, она лежит на гипотенузе , так как грань . проходящая через гипотенузу-по условию перпендикулярна основанию. Опуская перпендикуляры из Н к катетам основания-получаю НН1 и НН2. С высотой пирамиды НS они образуют прямоугольные треугольники. В этих треугольниках SH-общая высота и одинаковый угол бетта по условию. Учитывая что высота в них может быть выражена SH=HH1*tgβ=HH2tgβ-следует что НН1=НН2. Теперь надо выразить это НН1 через а и ∠α. Н делит гипотенузу на две части b и a-b, выражу b через а...-второй рисунок Высота пирамиды HS=HH1*tg β=a*sinα*cosα*tgβ/(sinα+cosα) Площадь основания S(осн)=a^2*sinα*cosα/2 Тогда объем пирамиды V=S(осн)*SH/3=a^3*sin^2(2α)*tgβ/(24(sinα+cosα))
Для начала нарисуй рисунок, как у тебя просит условие,рисунок должен быть 100% точности.Когда нарисуешь рисунок, ты заметишь , что угол EOF развёрнутый , следовательно если угол EOB=120 градусам , то угол EOF -угол EOB=углу BOF, следовательно он равен 60 градусам, так как окружность равна 360 градусам , а угол COF состоит из 2-х маленьких , следовательно нам надо найти все маленькие углы (всего их 6),следовательно 360 градусов : 6(кол-во маленьких углов), получаем ,что все маленькие углы равны 60 градусам, следовательно , остаётся только сложить 2 маленьких угла, которые находятся внутри угла COF , угол COB + угол BOF =углу COF , подставим значения, 60+60=120.ответ:угол COF=120 градусам.
Опуская перпендикуляры из Н к катетам основания-получаю НН1 и НН2.
С высотой пирамиды НS они образуют прямоугольные треугольники.
В этих треугольниках SH-общая высота и одинаковый угол бетта по условию.
Учитывая что высота в них может быть выражена SH=HH1*tgβ=HH2tgβ-следует
что НН1=НН2.
Теперь надо выразить это НН1 через а и ∠α. Н делит гипотенузу на две части b и a-b, выражу b через а...-второй рисунок
Высота пирамиды HS=HH1*tg β=a*sinα*cosα*tgβ/(sinα+cosα)
Площадь основания S(осн)=a^2*sinα*cosα/2
Тогда объем пирамиды V=S(осн)*SH/3=a^3*sin^2(2α)*tgβ/(24(sinα+cosα))