ответ: Объем шарового сегмента опущенного в цилиндр = π*468 см³
Объяснение: Дано:
Диаметр шара = 30 см тогда его радиус R = 15
Радиус основания цилиндра r = 12см
Найти объем шарового сегмента, опушенного в цилиндр V - ?
Смотрите рисунок. Что бы найти объем надо найти размер h - глубину погружения шара. По теореме Пифагора R² = r² + (R-h)² Получили квадратное уравнение: h² - 2Rh + r² = 0
h1,2 = (2R+-√4R² - 4r²)/2 = (2R+-2√R²-r²)/2 h = 6 см
Объем шарового сегмента найдем по формуле V = π*h²(R - h/3) = π*468 см³
1. Первоначальные сведения по геометрии появились за 4-5 тысячелетий до наших дней в Древнем Египте. В этих краях ежегодные разливы Нила смывали посевы. Поэтому для того чтобы восстанавливать посевы и уточнять размеры налогов, необходимо было размечать поля и выполнять необходимые подсчёты.
2. Древнегреческие учёные переняли у египтян измерения и учёта земель и назвали эти знания геометрией. "Геометрия" - слово, происходящее от греческих слов "reo" - земля, "метрео" - измерять.
3. Евклид, Пифагор, Мухаммад аль-Хорезми, Ахмад Фергани, Абу Райхан Беруни, Абу Али ибн Сина.
4. Памятник Кок Минор напоминает нам форму цилиндра, а на его поверхности фигуры, похожие на круги, овалы и ромбы.
5. Геометрия изучает пространственные структуры и отношения.
Объяснение:
Вроде всё!)
Обозначим пирамиду АВСД. Д вершина. Проведём высоту основания ВЕ из точки В на АС и высоту пирамиды ДЕ. Точка О лежит на ВЕ и является центром вписанной окружности правильного треугольника(основание). Обозначим сторону основания а, а боковое ребро в. Тогда по условию а=в/3. ЕО=r= (корень из 3/6)*а=в/6корней из 3. Апофема ДЕ=(корень из 3)/2*в. Угол ДЕВ будет линейным углом искомого двугранного угла(АС ребро двугранного угла, ВЕ перпендикуляр к ребру). Тогда cosДЕО=ЕО/ДЕ=(в/6 корней из 3):(корень из 3/2)*в=0,11. По таблице находим угол равен примерно 84 градуса.