По ф.Герона: S=√[p(p-a)(p-b)(p-c)], где р - полупериметр треугольника, a, b и с - его стороны. р-(37+37+24):2=49 S=√[49•12•12•25]=7•12•5=420 (ед. площади)
Опустим высоту на основание. Высота равнобедренного треугольника, проведенная между равными сторонами, делит его на два равных прямоугольных, в которых боковые стороны треугольника - гипотенузы, высота и половина основания - катеты. . Тогда по т.Пифагора h=√(37²-(24/2)²)=35 S=h•a/2=35•24/2=420 (ед. площади).
Площадь параллелограмма = произведению его смежных сторон на синус угла между ними S = AB · BC · sin α = 4*5* sin α =20 * sin α =16 sin α = 16/20=0,8 cos² α = 1 - sin² α = 1 - 0,8² = 1 - 0,64 = 0,36 cos α = +-0,6
Найти большую диагональ, диагональ лежащую против БОЛЬШЕГО угла ⇒ α>90 ⇒ cos α = - 0,6
В ΔАВС Квадрат стороны = сумме квадратов двух других его сторон без удвоенного произведения этих сторон на косинус угла между ними АС² = АВ² + ВС² -2 · АВ · ВС ·соs α =5² +4² + 2·5·4·0,6= 65 AC = √65 ≈ 8 - бОльшая диагональ параллелограмма
Площадь параллелограмма = произведению его смежных сторон на синус угла между ними S = AB · BC · sin α = 4*5* sin α =20 * sin α =16 sin α = 16/20=0,8 cos² α = 1 - sin² α = 1 - 0,8² = 1 - 0,64 = 0,36 cos α = +-0,6
Найти большую диагональ, диагональ лежащую против БОЛЬШЕГО угла ⇒ α>90 ⇒ cos α = - 0,6
В ΔАВС Квадрат стороны = сумме квадратов двух других его сторон без удвоенного произведения этих сторон на косинус угла между ними АС² = АВ² + ВС² -2 · АВ · ВС ·соs α =5² +4² + 2·5·4·0,6= 65 AC = √65 ≈ 8 - бОльшая диагональ параллелограмма
По ф.Герона:
S=√[p(p-a)(p-b)(p-c)], где р - полупериметр треугольника, a, b и с - его стороны.
р-(37+37+24):2=49
S=√[49•12•12•25]=7•12•5=420 (ед. площади)
Опустим высоту на основание. Высота равнобедренного треугольника, проведенная между равными сторонами, делит его на два равных прямоугольных, в которых боковые стороны треугольника - гипотенузы, высота и половина основания - катеты. .
Тогда по т.Пифагора
h=√(37²-(24/2)²)=35
S=h•a/2=35•24/2=420 (ед. площади).