(См. рисунок) Прямые ND и DC пересекаются в точке D: ND ∩ DC = D
⇒ по теореме стереометрии о пересекающихся прямых через них проходит плоскость и притом только одна – плоскость γ ("гамма").
Две точки прямой NC лежат в плоскости "гамма", значит вся прямая NC лежит в этой плоскости: NC ⊂ γ. Так как прямая KN пересекает NC в точке N, принадлежащей прямой NC: N ∈ NC, то KN и NC также лежат в одной плоскости. Итак, точки N, D, C, K образуют плоскость γ.
Поскольку плоскость α параллельна плоскости β: α║β,
то по теореме о пересечении двух параллельных плоскостей третьей: линии пересечения будет параллельны друг другу ⇒ KN ║ DC ⇒ углы
NDC и KND – односторонние; их сумма равна развёрнутому углу:
∠NDC + ∠KND = 180° ⇒ ∠KND = 180° - ∠NDC = 180° - 80° = 100°.
ответ: ∠KND = 100°
Тогда (А+В)/2=12 по условию, А+В=24
Отношение оснований определяет кол-во частей, их три (2+1), значит 24:3=8 это одна часть, отсюда находим второе основание, которое составляет две части.
Спать надо по ночам, а не трапеции решать.)