см³.
Обозначим данную пирамиду буквами 
см.
Проведём высоту пирамиды SO.

Начертим около этой пирамиды конус.
Так как конус описан около данной пирамиды, то высота конуса совпадает с высотой данной пирамиды.
=======================================================
Так как данная пирамида - правильная, треугольная ⇒ основание данной пирамиды - правильный треугольник.
см.
Проведём высоту
в 
- прямоугольный, так как
- высота пирамиды.
- прямоугольный, так как
- высота
.
Так как
- равносторонний ⇒
- высота, медиана и биссектриса
см, так как
- медиана.
Найдём
по теореме Пифагора
.
см.
Точка
- пересечение медиан и делит их в отношении
, считая от вершины.
см
см.
Также
- радиус описанной около
окружности.
Рассмотрим 
Если угол в прямоугольном треугольнике равен
, то напротив лежащий катет равен половине гипотенузы.

Составим уравнение:
Пусть
, тогда
.
И по теореме Пифагора 

конуса =
см³.
дана трапеция ABCD
EM - средняя линия
пересекает диагонали в точках К и N
AC и BD - диагонали
из свойств средней линии трапеции: EM||BC||AD
CM=MD и EM||BC, тогда по теореме Фалеса ( если параллельные прямые, пересекающие стороны угла, отсекают на одной его стороне равные отрезки, то они отсекают равные отрезки и на другой его стороне) EM проходит через точку N.
AE=EM и EM||BC, тогда по теореме Фалеса ( если параллельные прямые, пересекающие стороны угла, отсекают на одной его стороне равные отрезки, то они отсекают равные отрезки и на другой его стороне) EM проходит через точку K.
Следовательно: AK=CK и DN=BN
можно также доказать через треугольники ABC и DCB - средняя линия трапеции будет средней линией этих треугольников. Средняя линия треугольника делит стороны пополам, значит диагонали пересекаются пополам.