ответ: а) 150* и 30*; б) 55* и 125*
Объяснение:
В нашем случае образуется 8 углов из которых одна половина равны между собой и вторая половина также равны между собой.
Так ∠1=∠4=∠5=∠8, как накрест лежащие и равны 150*.
А ∠2=∠3=∠6=∠7.
Сумма углов 1 и 2 равен 180*, т.е. получается развернутый угол, а углы смежные. Отсюда найдем ∠2=180*-150*=30*.
б) один из углов на 70* больше другого. обозначим один из углов через х, тогда другой, смежный ему, равен х+70. В сумме они дают 180*.Составим уравнение и найдем х:
х+х+70=180*;
2х+70=180*;
2х=180-70;
2х=110;
х=55* - один из углов (меньший).
55*+70*=125* - больший угол.
Итак, одна половина углов равна 55*, а другая - 125* (смотри предыдущее задание).
Как-то так... :)) Удачи!
∠ТАМ = 27°
Объяснение:
Дано:
∠ВАС = 34°
∠АВС = 46°
АМ - биссектриса
АТ - высота
Найти:
∠ТАМ - угол между высотой и биссектрисой
Найдём третий угол Δ АВС
∠АСВ = 180° - (∠ВАС + ∠АВС) = 180° - (34° + 46°) = 100°
Поскольку ∠АСВ тупой, то высота АТ опущена на продолжение стороны ВС, и
∠ТАМ = ∠ТАС + ∠САМ
∠ТСА = внешний угол про вершине С треугольника АВС, поэтому
∠ТСА = ∠ВАС + ∠АВС = 34° + 46° = 80°
Тогда поскольку АТ - высота, и ∠АТС = 90°, то
∠ТАС = 90° - ∠ТСА = 90° - 80° = 10°
∠САМ является половиной угла ВАС, так как АМ - биссектриса
∠САМ = 0,5 ∠ВАС = 0,5 · 34° = 17°
∠ТАМ = ∠ТАС + ∠САМ = 10° + 17° = 27°
Вертикальное ребро SA - высота пирамиды, равна 8√3 см.
SД - высота наклонной боковой грани,
АД - высота основания.
Рассмотрим прямоугольный треугольник SАД.
По заданию угол SАД равен 30 градусов.
Тогда высота АД = SA/(tg 30) = 8√3/(1/√3) = 8*3 = 24 см.
Высота SД = SА/(sin 30) = 8√3/(1/2) = 16√3 см.
Площадь основания So = (1/2)*12*24 = 144 см².
Боковое ребро основания равно:
АС = √(24²+6²) = √(576 + 36) = √612 = 6√17 см.
Площадь боковой поверхности равна:
Sбок = 2*(1/2)*(6√17)*(8√3) + (1/2)*12*16√3 =
= 48√51 + 96√3 = 48(√51 + 2√3) см².
Полная площадь поверхности пирамиды равна:
S = So + Sбок = 144 + 48(√51 + 2√3) см².