Найдите площадь прямоугольного треугольника с гипотенузой 10 и углом 15°∘ ----- Площадь прямоугольного треугольника можно найти произведением его катетов, деленному на 2, можно и произведением сторон на синус угла между ними, деленному на 2. Пусть в ∆ АВС угол С=90°, угол В=15º, гипотенуза АВ=10 по условию Тогда ВС=АВ*cos15°= ≈10*0,9659=9,659 sin 15º=≈0,2588 S=10*9,659*0,2588 :2= ≈12,4997 (ед. площади) ----------- Это приближенное значение площади данного треугольника. Но можно найти точное. Для этого применим точное значение косинуса и синуса 15º ( оно есть в таблицах Этот вариант решения дан в приложении.
1.треугольник АВС прямоугольный, АВ=20, ВС=10. Гипотенуза-20, катет-10, значит уг САВ=30град. 2. Тогда уг АВС = 60 град 3. По условию т М делит АВ пополам, значит ВМ=10 4. Рассмотрим треуг МВС, МВ=ВС- по построению, уг В=60 град - это вершина равнобедренного треуг МВС. Значит два угла при основании равны между собой по свойству равнобедренного треугольника. 180-60=120(град)-сумма углов при основании, 120:2=60(град)-углы при основании. 5. все углы в треуг МВС 60 град, знгачит это равносторонний треугольник. Значит СМ=МВ=ВС=10
ответ: СМ=10
2. АN,CM-медианы по условию задачи, а медианы в треугольнике в точки пересечения делятся 2:1, считая от вершины. Значит АО=2ОN ON=12:3=4(см) АО=2*4-8(см)
Это уравнение