1) В треугольниках АВС и ADC углы В и D прямые. Значит, при наложении их стороны совпадут. Совместим их так, чтобы луч ВА совпал с лучом DC, а луч ВС совпал с лучом DA. Так как у прямоугольника противоположные стороны равны, то совпадут и отрезки АВ и СD, и ВС и AD. Тогда совпадут и третьи стороны треугольников. Треугольники совпали при наложении, значит они равны.
2) АВ = CD и ВС = AD как противоположные стороны прямоугольника, ∠АВС = ADC = 90°, ⇒ ΔАВС = ΔCDA по двум сторонам и углу между ними ( по первому признаку)
АС - общая сторона треугольников АВС и ADC, ∠ВАС = ∠DCA как накрест лежащие при пересечении АВ║CD секущей АС, ∠ВСА = ∠DAC как накрест лежащие при пересечении ВС║AD секущей АС, ⇒ ΔАВС = ΔCDA по стороне и двум прилежащим к ней углам ( по второму признаку)
У ромба все стороны равны, диаганоли схрещиваются перпендикулярно и делят друг друга пополам, из-за чего он делится на 4 прямоугольных треугольника, где половинки этих диагоналей - катеты. Так как эти диагонали равны, то и катеты у всех треугольников равны. Из этого имеем, что треугольники равнобедренные, а значит углы при их основе равны между собой и равняются 45°. Так как диагонали ромба делят его углы напополам, то все его углы равны 45° + 45° = 90°. То есть, мы имеем четырехугольник, у которого все стороны равны, а все углы равняются 90°. Значит это квадрат.
Совместим их так, чтобы луч ВА совпал с лучом DC, а луч ВС совпал с лучом DA.
Так как у прямоугольника противоположные стороны равны, то совпадут и отрезки АВ и СD, и ВС и AD.
Тогда совпадут и третьи стороны треугольников.
Треугольники совпали при наложении, значит они равны.
2) АВ = CD и ВС = AD как противоположные стороны прямоугольника,
∠АВС = ADC = 90°, ⇒
ΔАВС = ΔCDA по двум сторонам и углу между ними ( по первому признаку)
АС - общая сторона треугольников АВС и ADC,
∠ВАС = ∠DCA как накрест лежащие при пересечении АВ║CD секущей АС,
∠ВСА = ∠DAC как накрест лежащие при пересечении ВС║AD секущей АС, ⇒ ΔАВС = ΔCDA по стороне и двум прилежащим к ней углам ( по второму признаку)