М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Lika8911
Lika8911
05.03.2020 10:31 •  Геометрия

●много ● если две стороны и угол между ними одного треугольника равны соответственно двум сторонам и углу между нимидругого треугольника, то такие треугольники равны. как понять доказательство этой теоремы , только просто , ясно и понятно. заранее )

👇
Ответ:
katekotloveka
katekotloveka
05.03.2020
Например: берем два треугольника. и если их сторона равны друг другу и угол между ними "равны"то эти два треугольники равны друг другу. в правиле все же ясно написанно.
4,4(40 оценок)
Открыть все ответы
Ответ:
Anonim223332
Anonim223332
05.03.2020

На рисунке обозначены:

ABC - Основание пирамиды

OS - Высота

KS - Апофема

OK - радиус окружности, вписанной в основание

AO - радиус окружности, описанной вокруг основания правильной треугольной пирамиды

SKO - двугранный угол между основанием и гранью пирамиды (в правильной пирамиде они равны)

Важно. В правильной треугольной пирамиде длина ребра (на рисунке AS, BS, CS ) может быть не равна длине стороны основания (на рисунке AB, AC, BC). Если длина ребра правильной треугольной пирамиды равна длине стороны основания, то такая пирамида называется тетраэдром (см. ниже).

Свойства правильной треугольной пирамиды:

боковые ребра правильной пирамиды равны

все боковые грани правильной пирамиды являются равнобедренными треугольниками

в правильную треугольную пирамиду можно как вписать, так и описать вокруг неё сферу

если центры вписанной и описанной вокруг правильной треугольной пирамиды, сферы совпадают, то сумма плоских углов при вершине пирамиды равна π (180 градусов) , а каждый из них соответственно равен π / 3 (пи делить на 3 или 60 градусов ).

площадь боковой поверхности правильной пирамиды равна половине произведения периметра основания на апофему

вершина пирамиды проецируется на основание в центр правильного равностороннего треугольника,, который является центром вписанной окружности и точкой пересечения медиан

4,7(8 оценок)
Ответ:
basik2017
basik2017
05.03.2020
Пусть А(0;ув) В(хв;0) С(х;у)

1. докажем, что хотя бы одна прямая из данных пересекает оси координат.
1) если оси не пересекаются, значит прямая ей параллельна, но если прямая параллельна одной оси, то она пересекаем другую -> данные прямые пересекают оси координат.
2. пусть координаты точки С - это (х;у)
3. длина отрезка АС, где А точка пересечения прямой а с осью ОУ
АС=квадратный корень( (х-0)^2+(у-ув)^2 ) = корень ( х^2+у^2-2*у*ув+ув^2) -> х= АС - корень из (у^2-2*у*ув+ув^2)
4. Длина отрезка ВС, где В точка пересечения прямой в с осью ОХ
ВС=квадратный корень( (х-хв)^2+(у-0)^2) = корень ( х^2-2*х*хв+хв^2+у^2) -> х= ВС + корень из (2*х*хв+хв^2+у^2)
5. х= АС-ВС-корень из (у^2-2*у*ув+ув^2)-корень из (2*х*хв+хв^2+у^2)= АС-ВС- корень (2*у^2-2*у*ув+2*х*хв+хв^2+ув^2) = корень (х^2+у^2-2*у*ув+ув^2-х^2-2*х*хв+хв^2+у^2-2*у^2-2*у*ув+2*х*хв+хв^2+ув^2) = корень ( 2*ув^2+2*хв^2) = корень ( 2*(ув+хв)^2) = (ув+хв) квадратный корень из 2

Решение было выведено через формулу поиска длины отрезка по координатом его начала и конца.
4,8(43 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ