№49: DK = 2
№50: MD = 16
Объяснение:
№49:
Т.к. ABCD - параллелограмм, AB || CD, то есть AB || CK. Тогда BK - секущая при параллельных прямых. Следовательно, ∠ABK=∠BKC, как накрест лежащие углы при параллельных прямых. Рассмотрим треугольник BCK: ∠CBK=∠BKC (∠ABK=∠CBK, по условию, а ∠ABK=∠BKC), следовательно, треугольник BCK равнобедренный. По свойству равнобедренного треугольника боковые стороны равны, то есть BC = CK = 8 (по условию). BC = CD + DK, CD = AB = 6 (по свойству параллелограмма), тогда DK = BC - CD = 8 - 6 = 2.
№50:
Т.к. ABCD - параллелограмм, BC || AD, то есть BC || MD. Тогда CM - секущая при параллельных прямых. Следовательно ∠BCM=∠CMA, как накрест лежащие углы при параллельных прямых.. Рассмотрим треугольник CAM: ∠CMA=∠MCA (∠MCA = ∠BCM по условию, а ∠BCM=∠CMD), следовательно, треугольник CAM равнобедренный. По свойству равнобедренного треугольника боковые стороны равны, то есть AM = AC = 10 (по условию). MD = AM + AD, BC = AD = 6 (по свойству параллелограмма), тогда MD = AM + AD = 10 + 6 = 16.
где а,б,с это стороны, а R радиус описанной окружности
R=abc/4S=a*a*a/4S=a³/(4*4√3)
S=1/2ab*sinA
мы знаем, что в равностороннем ∆ все углы равны 60°
4√3=1/2а²*(√3/2)
4√3=а²*(√3/4)
а²=4√3 / √3/4
а²=16
а=4
вернёмся в формулу с радиусом
R=a³/(4*4√3)
R=64/4*4√3=16/4√3=4/√3
можем избавиться от иррациональности в знаменателе
R=4/√3=(4√3)/3
ответ: радиус 4/√3 см