Две прямые, заданные уравнениями и , будут перпендикулярны тогда и только тогда, когда . Коэффициенты и называются угловыми коэффициентами. Мы имеем диагональ , которая лежит на прямой . Приведём уравнение этой прямой в нужный нам вид: . Здесь угловой коэффициент равен . Пусть диагональ лежит на прямой .Тогда, т.к. диагонали в квадрате перпендикулярны, , откуда . Т.е диагональ лежит на прямой . Но мы также знаем, что эта прямая проходит через точку . Исходя из этого составим уравнение: , откуда . Мы получили уравнение прямой, на которой лежит диагональ - это прямая или, что то же самое, .
Теперь к уравнениям сторон.
Две прямые, заданные уравнениями и , пересекаются под углом , тангенс которого равен . Причём при они перпендикулярны. Угол между диагональю и смежной стороной в квадрате равен . Пусть сторона лежит на прямой . Получается, нам нужно, чтобы прямая при пересечении с прямой образовывала угол в . (А сторона лежит на прямой .) Исходя из всего этого, составим и решим уравнение: Мы получили, что сторона лежит на прямой . Но мы также знаем, что эта прямая проходит через точку . Получаем, что , откуда . Значит, сторона лежит на прямой .
Найдём координаты вершины - это точка пересечения диагонали и стороны : Получили координаты вершины
Пусть прямая, на которой лежит сторона , имеет вид . Она перпендикулярна прямой, на которой лежит сторона . Отсюда, по вышеприведённому методу, найдём уравнение прямой, на которой лежит сторона : Получили, что сторона лежит на прямой .
параллельна , отсюда следует, что угловые коэффициенты этих прямых равны. Находим уравнение прямой, на которой лежит сторона : Получили уравнение : .
Найдём координаты точки :
параллельна , отсюда следует, что угловые коэффициенты этих прямых равны. Находим уравнение стороны CD: Получили, что сторона лежит на прямой
В равнобедренном треугольнике медиана, проведенная к основанию, является также и высотой. Рассмотрим получившийся прямоугольный треуг-ик АВ1В. Здесь АВ1=СВ1=16:2=8 (т.к. ВВ1 - медиана). По теореме Пифагора в АВ1В находим неизвестный катет ВВ1: BB1=√AB² - AB1² = √100-64=√36=6 Зная, что медианы треугольника АВС пересекаются в одной точке, которая делит каждую медиану в отношении 2 : 1, считая от вершины, выразим ОВ. ОВ : ОВ1 = 2 : 1 (всего частей получается 2+1=3). Если ВВ1 = 6, то каждая из трех частей равна 6:3=2. На ОВ приходится 2 части, значит, ОВ=2*2=4.
Пусть x-высота,проведенная из прямого угла прямоугольного треугольника к гипотенузе. По определению высота проведенная из примого угла прямоугольного треугольника г гипотенузе равна:X^2=8*18 X^2=144 X=12 После этого можно найти катет данного теругольника ,который будет являтся гепотинузой в получившемся втором треугольнике Длина катета равна :l^2=12^2+8^2 l^2=208 l=корень квадратный 208 А длину второго катета ,найдем из третего получившегося треугольника
Мы имеем диагональ
Здесь угловой коэффициент равен
Пусть диагональ
Теперь к уравнениям сторон.
Две прямые, заданные уравнениями
Угол между диагональю и смежной стороной в квадрате равен
Исходя из всего этого, составим и решим уравнение:
Мы получили, что сторона
Найдём координаты вершины
Получили координаты вершины
Пусть прямая, на которой лежит сторона
Получили, что сторона
Получили уравнение
Найдём координаты точки
Получили, что сторона