М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ziminasofa2703
ziminasofa2703
14.03.2021 08:41 •  Геометрия

Основой пирамиды является прямоугольный треугольник abc с гипотенузой ac. боковое ребро pb является высотой пирамиды, найдите площадь основания пирамиды если pa = 17 см pb = 8 см pc = 10 см) заранее

👇
Ответ:
Leafyllall
Leafyllall
14.03.2021

1)   найдем сторону  аb по теореме Пифагора :

       2         2        2   

   pb   = pa  + ab                              

                            2       2                       2     2

    ab = корень (pb    - pa   ) = корень (17   - 8   ) = 15

 

2)  найдем сторону ас  по теореме Пифагора :

                            2    2                                   2      2  

    ас = корень ( pc - pa  ) = корень (4корень13  -  8    ) = корень ( 16 * 13 - 64) = 12

 

3) найдем сторону cb по теореме Пифагора :   

                        2    2                       2     2

cb = корень (ab - ac   ) = корень (15 - 12 ) = 9

 

4) Площадь прямоугольного треугольника = 1/2 произведений катетов     найдем площади трех прямоугольних треугольников:

 

Sapb = 1/2 (pa * ab) = 1/2(8*15) = 60

Sapc = 1/2 (ap * ac) = 1/2(8*12) = 48

Sacb =1/2 (ac * cb) = 1/2(12*9)=54

 

найдем площадь треугольника Spcb = 1/2(pc * cb) = 1/2 (4корень13 * 9)

 

найдем площадь пирамиды  Sapb + Sapc + Sacb + Spcb = 60 + 48 + 54 + 1/2(4корень13*9)

4,6(51 оценок)
Открыть все ответы
Ответ:
lyubimova84
lyubimova84
14.03.2021

1. S =  25,5 дм².

2. Cosα = 0,96.

Объяснение:

1. Построим сечение. Для этого проведем из точки О (пересечение диагоналей основания пирамиды - прямоугольника) луч, параллельно боковому ребру AS и на пересечении этого луча с боковым ребром CS обозначим точку Р.  Соединив точки В и D с точкой Р, получим треугольник BPD -- сечение пирамиды, проходящее через диагональ BD параллельно боковому ребру AS (так как луч ОР лежит в плоскости сечения и параллелен ребру AS).

Диагонали прямоугольника равны и точкой пересечения делятся пополам.

По Пифагору АС = BD = √(6²+8²) = 10 дм.  ОС = АО = BO = OD = 5 дм.

Треугольники ASC и OPC подобны (OP║AS) c коэффициентом подобия k=OC/AC = 1/2. =>  PC = SC/2.

Опустим из точки Р перпендикуляр РН.

Треугольники OSC и HPC подобны (PH║OS)  c коэффициентом подобия k=PC/SC = 1/2.  =>  PH  = SO/2,  НС = ОС/2.

Проведем из точки С перпендикуляр СТ к диагонали BD.  Это высота прямоугольного треугольника BCD, проведенная из прямого угла и по ее свойству CТ = BC*CD/BD =  8*6/10 = 4,8дм.

Проведем из точки Н прямую HQ, параллельно СТ. Тогда HQ⊥BD и по теореме о трех перпендикулярах PQ⊥BD и является высотой треугольника BPD.

Треугольники OCТ и OHQ подобны (HQ║CT) c коэффициентом подобия k=PC/SC = 1/2.  =>  HQ  = CT/2 = 4,8/2 = 2,4 дм.

По Пифагору PQ = √(HQ²+PH²) = √(2,4²+4,5²) = √26,01 = 5,1 дм.

Площадь сечения равна S = (1/2)*10*5,1 = 25,5 дм².

2. Определение: Скрещивающиеся прямые — прямые, которые не лежат в одной плоскости и не имеют общих точек. АВ1 и СD1 скрещивающиеся прямые по определению.

Угол между скрещивающимися прямыми - это угол между любыми двумя пересекающимися прямыми, которые параллельны исходным скрещивающимся.

Проведем диагональ А1В грани АА1В1В. A1B параллельна СD1 как соответствующие диагонали противоположных граней параллелепипеда. АВ1 и А1В - скрещивающиеся прямые. Следовательно, искомый угол - это угол между прямыми АВ1 и А1В. Боковая грань АА1В1В - прямоугольникб диагонали которого пересекаются в точке О и этой точкой делятся пополам. Диагонали равны между собой и по Пифагору равны √(АА1²+АВ²) = √(6²+8²) = 10 ед. Тогда АО = А1О = 5 ед.  АА1 = 6 ед. (дано).

Найдем косинус этого угла по теореме косинусов:

Cosα = (AO²+A1O² - AA1²)/(2*AO*AO) = (5²+5²-6²)/(2*25) = 14/50 = 0,28.

Тогда по известной формуле

Sinα = √(1 - Cos²α) =  √(0,9216) = 0,96.


Основанием пирамиды, высота которой равна 9 дм, а боковые ребра равны друг другу, является прямоугол
4,8(37 оценок)
Ответ:
nurgustaandmitrу
nurgustaandmitrу
14.03.2021

1. S =  25,5 дм².

2. Cosα = 0,96.

Объяснение:

1. Построим сечение. Для этого проведем из точки О (пересечение диагоналей основания пирамиды - прямоугольника) луч, параллельно боковому ребру AS и на пересечении этого луча с боковым ребром CS обозначим точку Р.  Соединив точки В и D с точкой Р, получим треугольник BPD -- сечение пирамиды, проходящее через диагональ BD параллельно боковому ребру AS (так как луч ОР лежит в плоскости сечения и параллелен ребру AS).

Диагонали прямоугольника равны и точкой пересечения делятся пополам.

По Пифагору АС = BD = √(6²+8²) = 10 дм.  ОС = АО = BO = OD = 5 дм.

Треугольники ASC и OPC подобны (OP║AS) c коэффициентом подобия k=OC/AC = 1/2. =>  PC = SC/2.

Опустим из точки Р перпендикуляр РН.

Треугольники OSC и HPC подобны (PH║OS)  c коэффициентом подобия k=PC/SC = 1/2.  =>  PH  = SO/2,  НС = ОС/2.

Проведем из точки С перпендикуляр СТ к диагонали BD.  Это высота прямоугольного треугольника BCD, проведенная из прямого угла и по ее свойству CТ = BC*CD/BD =  8*6/10 = 4,8дм.

Проведем из точки Н прямую HQ, параллельно СТ. Тогда HQ⊥BD и по теореме о трех перпендикулярах PQ⊥BD и является высотой треугольника BPD.

Треугольники OCТ и OHQ подобны (HQ║CT) c коэффициентом подобия k=PC/SC = 1/2.  =>  HQ  = CT/2 = 4,8/2 = 2,4 дм.

По Пифагору PQ = √(HQ²+PH²) = √(2,4²+4,5²) = √26,01 = 5,1 дм.

Площадь сечения равна S = (1/2)*10*5,1 = 25,5 дм².

2. Определение: Скрещивающиеся прямые — прямые, которые не лежат в одной плоскости и не имеют общих точек. АВ1 и СD1 скрещивающиеся прямые по определению.

Угол между скрещивающимися прямыми - это угол между любыми двумя пересекающимися прямыми, которые параллельны исходным скрещивающимся.

Проведем диагональ А1В грани АА1В1В. A1B параллельна СD1 как соответствующие диагонали противоположных граней параллелепипеда. АВ1 и А1В - скрещивающиеся прямые. Следовательно, искомый угол - это угол между прямыми АВ1 и А1В. Боковая грань АА1В1В - прямоугольникб диагонали которого пересекаются в точке О и этой точкой делятся пополам. Диагонали равны между собой и по Пифагору равны √(АА1²+АВ²) = √(6²+8²) = 10 ед. Тогда АО = А1О = 5 ед.  АА1 = 6 ед. (дано).

Найдем косинус этого угла по теореме косинусов:

Cosα = (AO²+A1O² - AA1²)/(2*AO*AO) = (5²+5²-6²)/(2*25) = 14/50 = 0,28.

Тогда по известной формуле

Sinα = √(1 - Cos²α) =  √(0,9216) = 0,96.


Основанием пирамиды, высота которой равна 9 дм, а боковые ребра равны друг другу, является прямоугол
4,5(34 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ