Одна из сторон треугольника равна 6 см, высота, проведенная к ней, равна 12 см. вычислите высоту этого треугольника, проведенную к стороне, равной 16 см.
Номер 1 Рассмотрим треугольник AOC и треугольник BOD: угол AOC равен углу BOD(как вертикальные) AO=OB и CO=OD(по условию,т.к. точка серединой является O) значит треугольник AOC равен треугольнику BOD(по двум сторонам и углу между ними) значит угол DAO равен углу CBO(в равных треугольниках против равных сторон лежат равные углы)
номер 2: Рассмотрим треугольник ABD и треугольник ADC: по условию угол BDA равен углу ADC сторона AD-общая и по условию угол BAD=углу DAC(т.к. AD биссектриса) Значит треугольник ABD равен треугольнику ADC(по двум углам и стороне между ними) значит сторона AB=AC(т.к. в равных треугольниках против равных углов лежат равны стороны)
Из условия: 1) основание - квадрат 2) проекция стороны на основание -прямоугольный треугольник 3) в разрезе пирамиды по углам и вершине тоже треугольник
решение: треугольник с вершинами 1. вершина пирамиды 2.угол основания 3.нижняя точка высоты (центр основания) прямоугольный - угол 60 градусов, катет 4 см - второй катет 4/ tg60° проекция стороны на основание - прямоугольный треугольник - равнобедренный - катет 4/ tg60, а гипотенуза будет (4/ tg60°) / sin 45° (в прямоугольном равнобедренном треугольнике углы при гипотенузе равны по 45 градусов ) это и будет ответом - (4/ tg60°) / sin 45°
s=(1/2)*6*12
s=36
s=(1/2)*a*h
36=(1/2)*16*h
8x=36
x=4.5