Представим себе прямую и одну перпендикулярную ей плоскость (их бесконечно много). Теперь представим себе эту точку и начнём двигать плоскость по прямой так, чтобы точка попала на эту плоскость. Легко заметить, что это произойдёт только один раз.
Пирамида правильная, следовательно, в основании лежит правильный треугольник. Площадь полной поверхности - площадь основания+площадь боковой поверхности. Площадь основания S(o) вычислим по формуле: S=(а²√3):4 S(о)=(9√3):4 Площадь боковой поверхности Sб - по формуле Sб=Р*(апофема):2 Основание высоты МО правильной пирамиды перпендикулярно основанию и лежит в центре вписанной окружности/ Апофему МН найдем из прямоугольного треугольника МОН. Т.к. грань наклонена к плоскости основания под углом 45, высота пирамиды равна радиусу вписанной в правильный треугольник окружности, а апофема МН, как гипотенуза равнобедренного прямоугольного треугольника, равна с=а√2, т.е.ОН*√2 МО=ОН. ОН=r=(3√3):6=(√3):2 МН=(√3):2)*√2=(√3*√2):2 Р=3*3=9 Sб=9*(√3*√2):2):2=9*(√3*√2):4 см² Sполн=(9√3):4+(9*√3*√2):4 Sполн=9√3)(1+√2):4 или 2,25*(1+√2) ≈ 5,43 см² ---- bzs*
Обозначим сторону квадрата 2x. Треугольник АВЕ - равнобедренный. Высота из вершины Е на сторону АВ делит АВ пополам. Точка Е равноудалена от точек А и В и лежит на серединном перпендикуляре к АВ, АВ || СD Поэтому точка Е равноудалена от точек С и D. СЕ=√13.
Обозначим высоту треугольника АВЕ у, тогда высота равнобедренного треугольника СDE будет равна (2x-y) По теореме Пифагора х²+у²=25 х²+(2х-у)²=13