М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ииоииири
ииоииири
06.04.2022 14:26 •  Геометрия

Дано: cd=5 см ad=12 см bf=6 см найти: s(abcd)

👇
Ответ:
margomds
margomds
06.04.2022
12+5=17(см.) ответ: 17см авсd
4,5(100 оценок)
Открыть все ответы
Ответ:
гуфиn
гуфиn
06.04.2022
Ладно, это одна из "любимых" тем - тетраэдр, вписанный в куб. Я напишу решение, но вам придется разбираться и оформлять самостоятельно.
а)
     Фигура ACB1B - правильная треугольная пирамида. В основании её равносторонний треугольник ACB1: AC = AB1 = CB1 (диагонали граней куба), и боковые ребра равны между собой BA = BC = BB1; (это просто стороны куба). Это означает, что точка B проектируется на плоскость ACB1 в центр треугольника ACB1 - точку O. (ну, у равностороннего треугольника все центры совпадают, можете выбирать, какой именно центр, но по логике это центр описанной окружности). То есть, BO перпендикулярно плоскости ACB1.
     Фигура ACB1D1 - тоже правильная треугольная пирамида, причем у неё равны между собой все ребра (все ребра этой пирамиды - диагонали граней куба). Поэтому D1O перпендикулярно плоскости ACB1; (аналогично предыдущему абзацу).
     Поскольку через точку O можно провести только один перпендикуляр к плоскости ACB1, точки B, O, D1 лежат на одной прямой, перпендикулярной плоскости ACB1, что и требовалось доказать.
б)
Легко видеть, что прямая C1D перпендикулярна плоскости A1D1C (в этой плоскости еще и точка B лежит), потому что C1D перпендикулярна D1C и A1D1 (A1D1 перпендикулярная грани CC1D1D). Точно также прямая A1D перпендикулярная плоскости AD1C1 (тоже, кстати, проходящей через точку B).
Поэтому (внимание! это - решение!) угол между плоскостями равен углу между прямыми  A1D и C1D.
Поскольку треугольник A1DC1 - равносторонний, искомый угол равен 60°
4,5(83 оценок)
Ответ:
Октаэдр в задаче можно представить себе следующим образом.
Пусть есть трехмерная система координат. На каждой из осей надо отложить от начала координат отрезки равной длины в обе стороны. Получится 6 точек, которые и будут вершинами октаэдра.
К примеру, если вершины (0,0,a) (0,0,-a) (0,a,0) (0,-a,0) (a,0,0) (-a,0,0)
то ребро равно c = a√2. Если очень хочется, можно найти, чему равно а при заданной длине ребра c = √6(√2 + 1). a = √3(√2 + 1); Но это не очень существенно.
Легко видеть, что в каждой из плоскостей, содержащих две оси координат, лежат одинаковые квадраты со стороной c.
Вот тут самая важная часть решения.
"С точки зрения вписанного куба" сечения, проходящие через оси XOZ и YOZ - это прямоугольники сo сторонами b и b√2 где b - ребро куба.
Эти сечения проходят через ребро куба, параллельное оси Z и диагонали горизонтальных граней.
В сечении плоскостью XOY лежит квадрат со стороной b, НЕ касающийся квадрата со стороной c (октаэдра).
То есть получается такая задача для нахождения b (при заданном c)
"В квадрат со стороной c = √6(√2 + 1) вписан прямоугольник со сторонами b и b√2, стороны которого параллельны диагоналям квадрата. Надо найти b^2".
Очевидно, что c = (b/2)*√2 + (b√2/2)*√2 = (b√2/2)(√2 + 1);
Отсюда b = 2√3; b^2 = 12;
4,8(40 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ