Можно. Медиана прямоугольного треугольника к гипотенузе равна её половине и делит исходный на два равнобедренных.
Так как углы равнобедренных треугольников равны, проще всего делить равнобедренный прямоугольный треугольник. Сумма его острых углов 90°, и каждый равен 45° ( см. рис. 1).
Другой случай - медиана, проведенная из прямого угла, делит исходный на остроугольный и тупоугольный с вершиной на гипотенузе. . Тупоугольный треугольник можно разделить на 3 равнобедренных, два крайних при этом будут между собой равны. (см. рис.2). Равные углы окрашены в одинаковые цвета. Доказать, что эти треугольники равнобедренные, наверняка сможете без труда.
Доказать, что медиана прямоугольного треугольника, проведенная к гипотенузе, равна ее половине.
1. Проведем прямую через точку , параллельную прямой . Точку пересечения этой прямой с прямой обозначим буквой .
2. Тогда , так как они являются накрест лежащими при параллельных прямых , и секущей . Также , так как они вертикальные. Кроме того, по условию. Следовательно, по стороне и двум прилежащим к ней углам.
3. Следовательно, . То есть в четырехугольнике две стороны равны и параллельны. Следовательно, этот четырехугольник — параллелограмм. Кроме того, все углы этого параллелограмма прямые. Следовательно, — прямоугольник.
4. То есть , так как это диагонали данного прямоугольника. Кроме того, эти диагонали точкой пересечения делятся пополам, следовательно, .